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Preface 
 

Preface 
 
Data science has its applications in all work areas like sentiment analysis, image analysis, sales 

forecasts, cost optimization etc. Big organizations like Google and Harvard have said that data 

science will be the best career option of the future!  

 

 Data Analytics field itself is still evolving and changing rapidly, with new strategies, tools and 

techniques coming online daily. These dynamics bring challenge to respond with innovative 

programs and curricular approaches that are connected deeply with Statistics analytics.  Use of 

computers with Statistical packages has become essential for large datasets. These packages are 

very costly at initial stage with annual renewal cost.  

 

R is freely available software and it is easily downloaded from website www.r_project.org. It is 

not menu driven software. One should know appropriate command and functions for Statistical 

analysis in interactive mode of this software. 

 

This practical manual covers all major topics required for learning R software to analyze data 

from F.Y.B.Sc. to T.Y.B.Sc. and some more. This manual contains illustrative examples and case 

studies which will be useful for academicians, researchers, industrialists and students for data 

analysis. As an activity under DBT-Star College Scheme this manual was an idea to also celebrate 

Diamond Jubilee of Department of Statistics. 

 

This manual will serve the purpose of giving hands on training in undergraduate level under 

Star- DBT Scheme, Department of Biotechnology, Government of India as one of the reference 

book for data analysis. 

 

I am thankful to all the contributors and my colleagues in Department of Statistics, K.C.College. I 

am thankful to Principal Dr. Hemlata Bagla for encouragement and guidance. I sincerely 

acknowledge Prof. (Dr.) S.A. Dubey for giving timely support in getting ISBN No. for this book. I 

am also thankful to Roshan Khilnani for designing book cover to forming all articles in a book 

form.  I welcome suggestions and improvement in this manual from users of this souvenir/ 

manual. 

 

Dr. Asha Angnamal Jindal 

Editor 
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Chapter 1 
 

Introduction to R-Software 
 

 

Mr. Prashant Shah, Associate Professor and Head, Department of Statistics,  

K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai. 

 

 

1.1 R as a programming language 

 

While R is perhaps best known as a statistical tool for analyzing data or for making graphs, 

it is also really useful as a simple programming language and compiler. In R, a program is 

just any group of commands that you wish to run as a set, to achieve some output.  

 

1.1.1 Using Text Editors and ".R" Files in R 

 

By using a text editor, we can write whole groups of commands and have the computer run 

them separately or all together. Further, text editors allow you to save your program for later 

use. 

 

There are three different types of windows that are used by R: console, graphics, and text 

editor windows. The window where you enter line commands is the R Console. When you 

used the "plot" command, it opened a new window, which is the graphics window. Text 

editor windows are just simple text editors that are smart enough to interact with R. 

 

On a PC, go to "File" and open "New script". To execute commands, either highlights the 

command(s) or put the cursor anywhere on that line and push the button in upper corner of 

the main R window for "Run line or selection." 

 

Creating a new document (or script) opens a simple text editor in R. You can then enter 

multiple lines of commands that are not executed until you are ready. And, instead of 

executing commands one by one, you can execute them all at once or any set of them 

together. You can also save the file (usually as a “____.R” file) and rerun these commands at a 

later time. 

 

1.2 What is Statistics? 

 

The subject of statistics deals with 

 Collection of data. 

 Presentation or organization of data. 

 Analysis of data. 

 Interpretation of, results of, analysis of data. 
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1.3 What is Data? 

 

A set of numerical or other measured values 

For Eg.  1. Salaries of employees. 

2. Export Rs. in crore of a company during 2010 to 2015. 

3. Daily credit/debit transactions in bank. 

4. Carbon dioxide content in the air, in different regions during different 

seasons. 

5. Patient’s disease history in hospitals. 

 

To analyse voluminous data, a number of statistical software are available such as 

 R-software 

 SAS (Statistical Analysis System) 

 SPSS (Statistical Package for the Social Sciences) 

 Minitab 

 

R is the most comprehensive statistical analysis package available. It incorporates all of the 

standard statistical tests, models, and analyses, as well as providing a comprehensive 

language for managing and manipulating data. R is free and open source software, allowing 

anyone to use and, importantly, to modify it. 

 

1.4 R commands, case sensitivity 

 

Technically R is an expression language with a very simple syntax. It is case sensitive, so A 

and a are different symbols and would refer to different variables. 

 

Elementary commands consist of either expressions or assignments. If an expression is given 

as a command, it is evaluated, printed (unless specifically made invisible), and the value is 

lost. 

 

An assignment also evaluates an expression and passes the value to a variable but the result 

is not automatically printed. 

 

Commands are separated either by a semi-colon (‘;’), or by a newline. Elementary commands 

can be grouped together into one compound expression by braces (‘{’ and ‘}’).  

 

Comments can be put almost anywhere, starting with a hashmark (‘#’), everything to the end 

of the line is a comment. 

 

If a command is not complete at the end of a line, R will give a different prompt, by default + 

on second and subsequent lines and continue to read input until the command is 

syntactically complete. 
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1.5 R-Commands to input data 

 

a) Assignment Statement 

 = or <- 

b) Creating vectors 

 c() 

 scan() 

c) Generating sequences 

 : 

 seq() 

 seq(from = a, to = b, by = c) 

 seq(length=d, from = a, by = c) 

d) Replicating objects or elements 

 rep() 

 

1.6 Simple manipulations; numbers and vectors 

 

1.6.1 Assignment: 

 

An assignment means naming a value, so that it can be used later. Assignment has general 

form 

Variable = expression or value ( =  is an assignment operator) 
> x = 2 + 3   # x is assigned value 5 

> x 

[1] 5 

> x + 2 

[1] 7 

> x = x * 3 

> x 

[1] 15 

> x = 2 + 3; y = -4; z = x * y # Commands are separated by a semi-colon (‘;’) 

> x; y; z 

[1] 5 

[1] -4 

[1] -20 

> x = 2 + 3; y = -4; z = x * y; x; y; z # Commands are separated by a semi-

colon (‘;’) 

[1] 5 

[1] -4 

[1] -20 

 

1.6.2 Vectors 

 

R operates on named data structures. The simplest such structure is the numeric vector, 

which is a single entity consisting of an ordered collection of numbers. To set up a vector 
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named x, say, consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R 

command 
> x <- c(10.4, 5.6, 3.1, 6.4, 21.7) 

This is an assignment statement using the function c() which in this context can take an 

arbitrary number of vector arguments (c stands for “combine.”). The idea is that a list of 

numbers is stored under a given name, and the name is used to refer to the data. The 

numbers within the c command are separated by commas. A list is specified with the c 

command, and assignment is specified with the “<-” symbols. Notice that the assignment 

operator (‘<-’), which consists of the two characters ‘<’ (“less than”) and ‘-’ (“minus”) 

occurring strictly side-by-side and it ‘points’ to the object receiving the value of the 

expression. A number occurring by itself in an expression is taken as a vector of length one. 

 

If an expression is used as a complete command, the value is printed and lost. So now if we 

were to use the command 
> 1/x 

the reciprocals of the five values would be printed at the terminal (and the value of x, of 

course, unchanged). 

 

The further assignment 
> b <- c(x, 0, x) 

would create a vector b with 11 entries consisting of two copies of x with a zero in the middle 

place. 

 

To see what numbers is included in x type “x” and press the enter key: 
> x <- c(10.4, 5.6, 3.1, 6.4, 21.7) 

> x 

[1] 10.4   5.6   3.1   6.4   21.7 

> typeof(x) 

[1] "double" 

 

1.6.3 Accessing vectors: 

 

Individual elements of a vector can be accessed by using indices. 
> x <- c(10.4, 5.6, 3.1, 6.4, 21.7) 

> x[3]  # third element of vector x is accessed. 

[1] 3.1 

> x[1]  # first element of vector x is accessed. 

[1] 10.4 

> x[2 : 4]  # elements from second to fourth of vector x are accessed. 

[1] 5.6   3.1   6.4 

> x[c(2,5)]  # elements having indices 2 and 5 are accessed. 

[1] 5.6   21.7 

> length(x)  # displays number of elements in vector x. 

[1] 5 

> x[3 : length(x)]  # elements having indices 3 to 5 of vector x 

are accessed. 

[1] 3.1   6.4   21.7 
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> x[4 : 2] # elements from fourth to second reversely of vector x are 

accessed. 

[1] 6.4   3.1   5.6 

> x[0] 

numeric(0) 

> x[6] 

[1] NA 

> x[x > 6]  # elements of vector x having value > 6 are accessed. 

[1] 10.4   6.4   21.7 

> x[x < 6]  # elements of vector x having value < 6 are accessed. 

[1] 5.6   3.1 

 

Subset command can also be used with vectors. 
> q = subset(x, x > 6) 

> q 

[1] 10.4  6.4 21.7 

> p = subset(x, x < 6) 

> p 

[1] 5.6 3.1 

> which (x < 6) # displays index of elements of vector x whose value is < 6. 

[1] 2 3 

> x[-1]  # elements except first are accessed. 

[1]  5.6  3.1  6.4 21.7 

> x[c(-2,-5)] # elements except second and fifth are accessed or x[-c(2,5)] 

[1] 10.4  3.1  6.4 

> x[-2 : -4] # elements except second to fourth are accessed. 

[1] 10.4 21.7 

> x < 6 

[1] FALSE  TRUE  TRUE FALSE FALSE 

Notice that the first entry is referred to as the number 1 entry and the zero entry can be 

used to indicate how the computer will treat the data. 
> 1/x 

[1] 0.09615385 0.17857143 0.32258065 0.15625000 0.04608295 

> x 

[1] 10.4  5.6  3.1  6.4 21.7 

> b <- c(x, 0, x) 

> b 

 [1] 10.4  5.6  3.1  6.4 21.7  0.0 10.4  5.6  3.1  6.4 21.7 

You can store strings using both single and double quotes. 
> t <- c("somaiya", "mumbai", 'new delhi') 

> t 

[1] "somaiya"   "mumbai"    "new delhi" 

> typeof(t) 

[1] "character" 

 

1.6.4 Alternative way to create data vectors 

 

Vectors can be created and data can be entered alternatively by using scan function. 
> x = scan() 

1: 3 -5 7 

4: 9 0 6.7 
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7: -2 

8:  

Read 7 items 

> x 

[1]  3.0 -5.0  7.0  9.0  0.0  6.7 -2.0 

> y = scan() 

1: 2 5 8 4 -2 

6: 9 5 

8:  

Read 7 items 

> y 

[1]  2  5  8  4 -2  9  5 

 

scan() function has many other arguments such as what, nmax etc 

 what: This argument indicates types of data to be accepted, by default it is 

numeric. For character data type set what = “character” 

 nmax:  This argument indicates maximum number of elements to be accepted. 
> t = scan(what = "character") 

1: "somaiya" "vidyavihar" 

3:  

Read 2 items 

> t 

[1] "somaiya"    "vidyavihar" 

> x = scan(nmax = 4) 

1: 5 -8 3 9 2 -11 6 

Read 4 items 

> x 

[1]  5 -8  3  9 

 

1.6.4 Vector arithmetic 

 

Vectors can be used in arithmetic expressions, in which case the operations are performed 

element by element. 

 

The elementary arithmetic operators are the usual +, -, *, / and ^ for raising to a power. In 

addition, several mathematical and statistical functions are also available in R for arithmetic 

operations. For eg.:  log, log10, sort, min, max, range, length, exp, sin, cos, tan, sqrt, and so on, 

all have their usual meaning.  

 

Vectors are mathematical objects. Standard arithmetic functions and operators apply to 

vectors on element wise basis. 

 

While applying simple arithmetic functions and operators to vectors proper care should be 

taken. If the operands are of different lengths then shorter of the two is extended by 

repetition. However, if the length of the longer is not multiple of length of shorter then 

warning message is displayed. 
> c(1,5,2,3) + c(1,3) 

[1] 2 8 3 6 
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> c(1,5,2) + c(1,3) 

[1] 2 8 3 

Warning message: 
In c(1, 5, 2) + c(1, 3) : 

longer object length is not a multiple of shorter object length 

 

1.7 Generating regular sequences 

 

R has a number of facilities for generating commonly used sequences of numbers. For 

example 12:20 is the vector c(12, 13, ..., 20). The colon operator has high priority within an 

expression, so, for example 2*12:20 is the vector c(24, 26, ..., 40). Put n <- 8 and compare the 

sequences 1:n-1 and 1:(n-1). 

 
> 12:20 

[1] 12 13 14 15 16 17 18 19 20 

> p <- 12:20 

> p 

[1] 12 13 14 15 16 17 18 19 20 

> q <- 3*12:20 

> q 

[1] 36 39 42 45 48 51 54 57 60 

> n = 8 

> t <- 5:(n-1) 

> t 

[1] 5 6 7 

> w <- 5:n - 1 

> w 

[1] 4 5 6 7 

The construction 20:12 may be used to generate a sequence backwards. 
> 20:12 

[1] 20 19 18 17 16 15 14 13 12 

 

The function seq() is a more general facility for generating sequences. It has five arguments, 

only some of which may be specified in any one call. The first two arguments, if given, specify 

the beginning and end of the sequence, and if these are the only two arguments given the 

result is the same as the colon operator. That is seq(12,20) is the same vector as 12:20. 

 

Parameters to seq(), and to many other R functions, can also be given in named form, in 

which case the order in which they appear is irrelevant. The first two parameters may be 

named from=value and to=value; thus seq(12,20), seq(from=12, to=20) and seq(to=20, 

from=12) are all the same as 12:20. The next two parameters to seq() may be named 

by=value and length=value, which specify a step size and a length for the sequence 

respectively. If neither of these is given, the default by=1 is assumed. 

 

For example 
> seq(-5, 5, by=.2) -> s3 

> s3 
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[1] -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -

2.2 

[16] -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2  0.0  0.2  0.4  0.6  

0.8 

[31] 1.0  1.2  1.4  1.6  1.8  2.0  2.2  2.4  2.6  2.8  3.0  3.2  3.4  3.6  

3.8 

[46] 4.0  4.2  4.4  4.6  4.8  5.0 

 

Similarly following command generates a sequence of 18 elements 
> s4 <- seq(length=18, from=-5, by=.2) 

> s4 

[1] -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -

2.2 

[16] -2.0 -1.8 -1.6 

rep() which can be used for replicating an object in various complicated ways. The simplest 

form is s5 <- rep(x, times=5) which will put five copies of x end-to-end in s5. 

 
> x 

[1] 305  16 122  68 

> s5 <- rep(x, times=5) 

> s5 

[1] 305  16 122  68 305  16 122  68 305  16 122  68 305  16 122  68 305  16 

122 

[20] 68 

 

Another useful version is s6 <- rep(x, each=5) which repeats each element of x five times 

before moving on to the next. 
> s6 <- rep(x, each=5) 

> s6 

[1] 305 305 305 305 305  16  16  16  16  16 122 122 122 122 122  68  68  68  

68 

[20]  68 

> s7 <- rep(1:4,c(2,1,2,1)) 

> s7 

[1] 1 1 2 3 3 4 

 

1.8 Matrix Operation 

 

To form a matrix you can use following syntax.  

matrix(data =, nrow =, ncol= ,byrow="FALSE"). 

 

data : Actual data may be written in any of the variable or values by using function 

c(). 

nrow : Number of rows of a matrix 

ncol : Number of columns of a matrix 

byrow  : It specifies whether matrix values are filled row wise or column wise.  

FALSE is by default i.e. column wise. If you want row wise then use 

TRUE. 
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For example, 
> a <- c(1,2,3,4,5,6,7,8,9,10,11,12) 

> A <- matrix(data=a, nrow=3, ncol=4, byrow="TRUE") 

> a 

[1] 1 2 3 4 5 6 7 8 9 10 11 12 

> A 

  [,1]  [,2]  [,3]  [,4] 

[1,] 1  2  3  4 

[2,] 5  6  7  8 

[3,] 9  10  11  12 

 

Specific values in a vector or in a matrix are referenced using square brackets ([ ]). For 

example, 
> x <- c(5,8,9,7,6) 

> x 

[1] 5 8 9 7 6 

> x[2]  

[1] 8 

> A[2,4]  

[1] 8 

> A[3,] 

[1] 9  10  11  12 

> A[c(2,3),1] #display 2nd and 3rd element of the first column of matrix A 

[1] 5 9 

> A[c(2,3),2] 

[1]  6 10 #display 2nd and 3rd element of the second column of matrix A 

 

Matrix operators are provided in the Table  

Table 2: Matrix Operations 

Operation or 
Function 

Description 

A * B Element-wise multiplication 

A %*% B Matrix multiplication 

t(A) Transpose 

diag(x) Creates diagonal matrix with elements of x in the principal diagonal 

diag(A) Returns a vector containing the elements of the principal diagonal 

diag(k) If k is a scalar, this creates a k x k identity matrix. 

solve(A,b) Returns vector x in the equation b = Ax 

solve(A) Inverse of A where A is a square matrix. 

ginv(A) 
Moore-Penrose Generalized Inverse of A. it requires loading the MASS 
package. 

y qr(A)$rank rank is the rank of A. 

cbind(A,B,...) Combine matrices(vectors) horizontally. Returns a matrix. 

rbind(A,B,...) Combine matrices(vectors) vertically. Returns a matrix. 
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1.9 Some commonly used Built-in functions 
 

> x <- c(-6,9,0,-3,8,2,-5,4)  

> x 

[1] -6  9  0 -3  8  2 -5  4 

> length(x)      #Displays the number of elements of vector x 

[1] 8 

> max(x)         #displays the maximum element of vector x 

[1] 9 

> min(x)         #displays the minimum element of vector x 

[1] -6 

> range(x)       #displays the range of the values of vector x 

[1] -6  9 

> sum(x)         # displays sum of the values of vector x 

[1] 9 

> cumsum(x)   # displays the cumulative sum of the values of vector x 

[1] -6  3  3  0  8 10  5  9 

> mean(x)        # displays the mean of the values of vector x 

[1] 1.125 

> median(x)      # displays the median of the values of vector x 

[1] 1 

> sort(x) # Sort the values of vector x in the increasing order  

[1] -6 -5 -3  0  2  4  8  9 

> sort(x, decreasing = T) # Sort the values of vector x in the decreasing 

order 

[1]  9  8  4  2  0 -3 -5 -6 

> var(x)   # Sample variance with denominator (n-1) 

[1] 32.125 

> which(x == 4) # displays index of the required element of vector x 

[1] 8 

> y <- c(3,4,-5) 

> prod(y)  # displays product of the values of vector y 

[1] -60 

round( ): Syntax for the function is round(object, digits) 

This function rounds object upto digits decimals. For example, 
> round(3.2156,3) 

[1] 3.216 

 

1.10 Data frames 

 

Data frames can be created by using data.frame. A data frame may be regarded as a matrix. 

It may be displayed in matrix form, and its rows and columns extracted using matrix indexing 

conventions. It is a list of vectors of the same length. (If the vectors included in the data frame 

are not of the same length then vector having less elements is recycled a whole number of 

times) 
> x <- c(-5,7,-3,8); y = 8:11; z = rep(-5,4); p = seq(1,12,3) 

> q = c(1,5) 

> r = 5:7 

> x;y;z;p;q;r 

[1] -5  7 -3  8 
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[1]  8  9 10 11 

[1] -5 -5 -5 -5 

[1]  1  4  7 10 

[1] 1 5 

[1] 5 6 7 

> d1 = data.frame(x,y) 

> d1 

    x   y  

1  -5   8  

2  7   9  

3  -3  10  

4   8 11  

 

First column indicates row numbers. 
> d2 = data.frame(q,p) 

> d2 

 q   p  

1  1   1  

2  5   4  

3  1   7  

4  5  10  

In this data frame d2 vector having fewer elements (i.e. vector q) is recycled a whole number 

of times (2 times, so that its length becomes as that of length of other vector p) 

Different columns in data frame are vectors. Names can be given to these columns while 

creating data frames. 

 
> d4 = data.frame("maths" = x, "stats" = y) 

> d4 

   maths  stats  

1     -5      8  

2    7      9  

3   -3     10  

4    8     11  

Rows in data frames can be given names using row.names which is a vector of character 

strings indicating names of rows. 

 
> d5 = data.frame("maths" = x, "stats" = y, row.names = c("Amit", "Vidya", 

"Ganesh", "Tina")) 

> d5 

     maths   stats  

Amit -5  8  

Vidya 7 9  

Ganesh -3 10  

Tina 8 11  

 

1.11 Accessing data from data frames 

 

Data from data frame can be accessed using $ notation 
> d5 $ maths 

[1] -5  7 -3  8 
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> d5 $ maths[3] 

[1] -3 

> d5[4,2] 

[1] 11 

 

1.12 Inbuilt data sets or Resident data sets 

 

The data sets that come with R or one of the packages are known as Inbuilt data sets. To 

view all Inbuilt data sets names from package ‘datasets’ use following command. 
> data() 

 

For accessing existing data sets, command is as follows 
> data(data set name) 

> data(co2) 

> co2   # displays data set co2 

Note: Data frame can also be created using in-built data editor edit similar 

to MS-Excel. 

> stud <- edit(data.frame()) #this command displays in-built spread sheet. 

> stud 

    var1  var2  

1  fybsc    45  

2  fybsc    50  

3  sybsc    55  

4    msc    60  

> names(stud) <- c("Standard","Marks") 

> stud 

   Standard Marks  

1 fybsc 45  

2 fybsc 50  

3  sybsc 55  

4 msc 60  

 

1.13 Importing Data from Excel 

 

The function read.table() is the easiest way to import data into R. The preferred raw data 

format is either a tab delimited or a comma-separate file (CSV). 

Working directory can be checked using getwd(). 

Store the excel file in csv format in this working directory. 

 
> d1 <- read.table("temp1.csv",header=TRUE, sep=",")   

# This creates dataframe d1 

> d1 

 Roll.No Name Marks  

1 21 fgdgf 45  

2 22 wqeq 78  

3 23 zxcvz 60  

4 25 jkljl 47  

> dm = as.matrix(exp) 

> dm 
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 Item Ramesh Ganesh  

[1,] "Food" "1600" "1200"  

[2,] "Rent" "1500" "2000"  

[3,] "Electricity"  "1000" "1500"  

[4,] "Misc." "900" "3000"  
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Chapter 2 
 

Graphs and Diagram 
 

 

Mr. Prashant Shah, Associate Professor and Head, Department of Statistics,  

K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai. 

 

 

2.1 Introdution 

 

 Statistical data can be represented in the form of diagrams such as 

 Simple bar diagram 

 Multiple bar diagram 

 Subdivided bar diagram 

 Pie diagram or pie chart 

 

2.2 Bar Diagrams 

 
> barplot(height, beside = T, names.arg = NULL, col = NULL, border = 

par("fg"), main = NULL, xlab = NULL, ylab = NULL,  xlim = NULL, ylim = 

NULL,...) 

 

height:  Either a vector or matrix of values describing the bars which make up the plot. If 

height is a vector, the plot consists of a sequence of rectangular bars with heights given by 

the values in the vector. If height is a matrix and beside is FALSE then each bar of the plot 

corresponds to a column of height, with the values in the column giving the heights of stacked 

sub-bars making up the bar. If height is a matrix and beside is TRUE, then the values in each 

column are juxtaposed rather than stacked. 

names.arg: A vector of names to be plotted below each bar or group of bars. If this argument 

is omitted, then the names are taken from the names attribute of height if this is a vector, or 

the column names if it is a matrix. 

main: Overall title for the plot. 

beside: A logical value. If FALSE, the columns of height are portrayed as stacked bars, and if 

TRUE the columns are portrayed as juxtaposed bars (adjoining or contiguous bars) 

Example:  The following table gives the average approximate yield of rice in kg. per acre in 

various states of India in 2003-04. Represent it by Simple Bar diagram. 

 

State : Punjab Haryana U.P. Gujarat Bihar Karnataka 

Yield : 728 943 1469 2903 2153 2276 

 
> x <- c("Punjab", "Haryana", "U.P.", "Gujarat", "Bihar", "Karnataka") 
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> y <- c(728, 943, 1469, 2903, 2153, 2276) 

> x 

[1] "Punjab"    "Haryana"   "U.P."      "Gujarat"   "Bihar"     "Karnataka" 

> y 

[1]  728  943 1469 2903 2153 2276 

> barplot(y, names.arg = x, col = "red", border = "blue", main = "Yield of rice 

in kg. per acre in various states of India", xlab = "States", ylab = "Yield") 

 

 
Example: Represent the following data on faculty-wise distribution of students, by multiple 

bar diagram. 

College Arts Science Commerce 

A 1200 600 500 

B 1000 800 650 

C 1400 700 850 

D 750 900 300 

 
> clg <- c("A", "B", "C", "D") 

> clgA <- c(1200, 600, 500) 

> clgB <- c(1000, 800, 650) 

> clgC <- c(1400, 700, 850) 

> clgD <- c(750, 900, 300) 

> d = data.frame(clgA, clgB, clgC, clgD) 

> d 

 clgA clgB clgC clgD  

1 1200 1000 1400 750  

2 600 800 700 900  

3 500 650 850 300  

> d1 = as.matrix(d) 

> d1 

 clgA clgB clgC clgD  

[1,] 1200 1000 1400 750  
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[2,] 600 800 700 900  

[3,] 500 650 850 300  

> barplot(d1, beside = T, names.arg = clg, col = 1:2:3, legend = c("Arts", 

"Science", "Commerce"),xlab = "College", ylab = "No. of Students") 

 

 
 

For the above example draw subdivided bar diagram. 
> barplot(d1, beside = F, names.arg = clg, col = 1:2:3:4, legend = c("A", 

"B", "C", "D"),xlab = "College", ylab = "No. of Students") 

 

 
 

barplot(d1, beside = F, horiz = T, names.arg = clg, col = 1:2:3, legend = 

c("Arts", "Science", "Commerce"),ylab = "College", xlab = "No. of Students") 
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Example: Represent the following data by a pie diagram: 

 

 Item : Food Clothing Recreation Indian Rent Miscellaneous 

Expenditure in Rs.) 87 24 11 13 25 20 

 
> itm <- c("Food", "Clothing", "Electric", "Movie", "Rent", "Misc") 

> exp ,- c(87, 24, 11, 13, 25, 20) 

> pie(exp, main = "Expenditure", labels = itm, radius = 1, 

col=rainbow(length(exp))) 
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2.3 Graphical Representation of data 

 

 Statistical data can be represented in the form of graphs such as 

 Histogram 

 Frequency polygon 

 Ogive curve 

R supports commands hist, plot, lines, points etc for drawing above graphs. 

 

2.3.1 Histogram 
 

> hist(x, breaks = classlimits, freq/probability = False/True, density = 

NULL, col = NULL, border = NULL, main = paste("Histogram of", xname), xlim = 

range(breaks), ylim = NULL, xlab = xname, ylab=yname,  axes = TRUE . . . .) 

x: A vector of values for which the histogram is desired. 

breaks: A vector giving breakpoints (class limits) for histogram. This can be done using c() 

or seq(). For eg: breaks=c(100, 300, 500, 700) Compute a histogram for the raw data 

values and set the bins (bars) such that they run from 100 to 300, 300 to 500 and 500 to 700. 

However, the c() function can make your code very messy sometimes. That is why you can 

instead use breaks=seq(x, y, z). The values of x, y and z are determined by yourself and 

represent, in order of appearance, the begin number of the x-axis, the end number of the x-

axis and the interval in which these numbers appear.  
> brk <- seq(148,178,5) 

> hist(x, breaks = brk)  

This command creates histogram with class limits 148 to 153, 153 to 158, 158 to 163, 163 

to 168, 168 to 173, 173 to 178. 

Note that you can also combine the two functions: 
> hist(x, breaks=c(100, seq(200,700, 150)))  

Make a histogram for the vector x, start at 100 on the x-axis, and from values 200 to 700, 

make the bins 150 wide 

freq/probability: logical; if TRUE, the histogram graphic is a representation of frequencies; 

if FALSE, probability densities, are plotted (so that the histogram has a total area of one). 

Defaults to TRUE if and only if breaks are equidistant (and probability is not specified). 

density:  the density of shading lines, in lines per inch. The default value of NULL means that 

no shading lines are drawn. 

col: a colour to be used to fill the bars. The default of NULL yields unfilled bars. 

border:  the color of the border around the bars. The default is to use the standard 

foreground color. 

main: Overall title for the plot. 

 
> brk <- seq(148,178,5) 

> xnme = “Heights” 

> hist(x, breaks = brk, freq = FALSE, main = paste("Histogram of" , xnme)) 

 

> x <- scan() 

1: 170 151 154 160 158 154 171 156 160 157 148 165 158 

14: 160 157 159 155 151 152 161 156 164 156 163 174 153 170 149 166 154 
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31: 166 160 160 161 154 163 164 160 148 162 167 165 158 158 176 

46:  

Read 45 items 

> hist(x) 

> hist(x, breaks = brk, freq = FALSE, col = "red", border = "blue", main = 

paste("Histogram of" , xnme), xlab = "Student's Heights", ylab="Prportion of 

students") 

 

 
 

Histogram for ungrouped frequency data 

x: 150 155 160 165 170 175 

f: 6 11 14 9 3 2 

 
> x <- seq(150,175,5) 

> f <- c(6,11,14,9,3,2) 

> y <- rep(x,f) 

> hist(y) 

> t = seq(147.5,177.5,5) 

> hist(y, breaks = t) 

 

Histogram for grouped frequency data 

C.I. 0-25 25-50 50-75 75-100 100-125 

f: 5 8 13 11 3 

 
> midx <- seq(12.5,112.5,25) 

> f <- c(5,8,13,11,3) 

> cls_limit <- seq(0,125,25) 

> y <- rep(midx,f) 

> hist(y) 

> hist(y, breaks=cls_limit) 
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2.3.2 Frequency polygon 

 

It is obtained by joining the points (xi, fi) where xi is the midpoint of the ith class interval 

and fi is the corresponding frequency. 
> lb <- seq(0,100,25) 

> ub <- seq(25, 125, 25) 

> midx <- (lb+ub)/2 

> f <- c(5,8,13,11,3) 

> x0 <- c(0, midx, 125) 

> f0 <- c(0,f,0) 

> y <- rep(midx,f) 

> bks <- seq(0,125,25) 

> hist(y,breaks=bks) 

> lines(x0, f0) 

 
OR 
> plot(x0,f0, main = "Frequency Polygon", xlab ="X-axis", ylab = "Y-axis", 

type = "o", lty =6,  xlim = range(min(x0),max(x0))) 
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2.3.3 Ogives 

C.I. 0-25 25-50 50-75 75-100 100-125 

f: 5 8 13 11 3 

 
> f <- c(5,8,13,11,3) 

> f 

[1]  5  8 13 11  3 

> lc <- cumsum(f) 

> lc 

[1]  5 13 26 37 40 

> uc <- 1:5 

> uc 

[1] 1 2 3 4 5 

> for(i in 5:1) 

+ {uc[i] <- sum(f[5:i])} 

> uc 

[1] 40 35 27 14  3 

> lbx <- seq(0,100,25) 

> lbx 

[1]   0  25  50  75 100 

> ubx <- seq(25,125,25) 

> ubx 

[1]  25  50  75 100 125 

> plot(ubx,lc,type = "l",xlim = c(0,100),xlab = "Class Interval", ylab = 

"Cumulative frequency",lwd =2) 

> lines(lbx,uc,type = "l",xlim = c(0,100),xlab = "Class Interval", ylab = 

"Cumulative frequency",lwd =2) 
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Chapter 3 
 

Measures of Central Tendency 
 

 

Mrs. Pratiksha M. Kadam, Assistant Professor, Department of Statistics,  

K. C. College, Churchgate, Mumbai – 400 020. 

 

 

3.1 Introduction 

 

According to Prof. Bowley, “Measures of central tendency (averages) are statistical constants 

which enable us to comprehend in a single effort the significance of the whole.” In this 

chapter we discuss the functions in R to calculate various measures of central tendency. 

 

There are different types of averages. 

1. Mathematical Averages: 

a. Arithmetic mean 

b. Geometric mean 

c. Harmonic mean 

2. Positional Averages: 

a. Partition Values 

 Medians 

 Quartiles 

 Deciles 

 Percentiles 

b. Mode 

 

3.2 Mathematical Averages 

 

3.2.1 Arithmetic mean 

 

For raw data: 

�̅� =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

Where n = the number of terms  

xi = ith observation 

 

For ungrouped frequency distribution: 

�̅� =
∑ 𝑓𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑓𝑖
𝑛
𝑖=1
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Where n= total number of observations 

 xi = ith observation; fi = frequency of ith observation 

 

For grouped frequency distribution: 

�̅� =
∑ 𝑓𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑓𝑖
𝑛
𝑖=1

 

Where xi = mid-point of ith class interval 

fi = frequency of ith class 

 

3.2.2 Geometric Mean 

 

For raw data: 

�̅� = (∏ 𝑥𝑖

𝑛

𝑖=1

)

1
𝑛

 

Where n = the number of terms  

xi = ith observation 

 

For ungrouped frequency distribution: 

�̅� = (∏ 𝑥𝑖
𝑓𝑖

𝑛

𝑖=1

)

1
𝑁

 

Where N=∑ 𝑓𝑖
𝑛
𝑖=1  

n= total number of observations) 

 xi = ith observation; fi = frequency of ith observation 

 

For grouped frequency distribution: 

�̅� = (∏ 𝑥𝑖
𝑓𝑖

𝑛

𝑖=1

)

1
𝑁

 

Where N=∑ 𝑓𝑖
𝑛
𝑖=1  

xi =mid-point of ith class interval 

fi = frequency of ith class 

 

3.2.3 Harmonic Mean 

 

For raw data: 

�̅� =
𝑛

∑
1
𝑥𝑖

𝑛
𝑖=1

 

Where n = the number of terms  

xi = ith observation 
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For ungrouped frequency distribution: 

�̅� =
𝑁

∑
𝑓𝑖

𝑓𝑖𝑥𝑖

𝑛
𝑖=1

 

Where N=∑ 𝑓𝑖
𝑛
𝑖=1  

n= total number of observations) 

 xi = ith observation 

fi = frequency of ith observation 

For grouped frequency distribution: 

�̅� =
𝑁

∑
𝑓𝑖

𝑓𝑖𝑥𝑖

𝑛
𝑖=1

 

Where N=∑ 𝑓𝑖
𝑛
𝑖=1  

xi =mid-point of ith class interval 

fi = frequency of ith class 

 

3.3 Positional Averages 

 

3.3.1 Partition Values 

 

a) Median 

 

Median is the value that divides the data into two equal parts, when the data is arranged in 

numerical order. It is the middle value when data size N is odd. It is the mean of the middle 

two values, when data size N is even.  

 

For ungrouped frequency distribution: 

 

Find the cumulative frequencies for the data. The value of the variable corresponding to 

which a cumulative frequency is greater than (N+1)/2 for the first time.(Where fi = frequency 

of ith observation, N=∑ 𝑓𝑖
𝑛
𝑖=1 )  

 

For grouped frequency distribution: 

 

First obtain the cumulative frequencies for the data. Then mark the class corresponding to 

which a cumulative frequency is greater than N/2 for the first time. Find the cumulative 

frequencies for the data. The value of the variable corresponding to which a cumulative 

frequency is greater than (N+1)/2 for the first time.(Where fi = frequency of ith observation, 

N=∑ 𝑓𝑖
𝑛
𝑖=1 .) Then that class is median class. Then median is evaluated by the following 

formula: 

𝑚𝑒𝑑𝑖𝑎𝑛 = 𝑙1 + (𝑙2−𝑙1) (

𝑁
2

− 𝑐𝑓

𝑓𝑚
) 
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Where N=∑ 𝑓𝑖
𝑛
𝑖=1  

fi = frequency of ith class; l1= lower limit of the median class; 

l2= upper limit of the median class;  fm= frequency of the median class. 

cf = cumulative frequency of the class proceeding to the median class.  

 

b) Quartiles 

 

The data can be divided in to four equal parts by three points. These three points are known 

as quartiles. The quartiles are denoted by Qi, i = 1,2,3. Qi is the value corresponding to 

(iN/4)th observation after arranging the data in the increasing order.  

 

For grouped frequency distribution: 

First we obtain the cumulative frequencies for the data. Then mark the class corresponding 

to which a cumulative frequency is greater than (iN)/4 for the first time. (Where fi = 

frequency of ith observation, N=∑ 𝑓𝑖
𝑛
𝑖=1 ). Then that class is Qi class. Then Qi is evaluated by 

formula: 

 i= 1, 2, 3  

𝑄𝑖 = 𝑙1 + (𝑙2−𝑙1) (

𝑖𝑁
4

− 𝑐𝑓

𝑓𝑞
) 

  

Where l1= lower limit of the Qi class 

l2= upper limit of the Qi class  

cf = cumulative frequency of the class proceeding to the Qi class.  

 fq= frequency of the Qi class.  

  

c) Deciles 

 

Deciles are nine points which divided the data in to ten equal parts. Di is the value 

corresponding to (iN/10)th observation after arranging the data in the increasing order.  

 

For grouped frequency distribution: 

First obtain the cumulative frequencies for the data. Then mark the class corresponding to 

which a cumulative frequency is greater than (iN)/10 for the first time. (Where fi = frequency 

of ith observation, N=∑ 𝑓𝑖
𝑛
𝑖=1 ). Then that class is Di class. Then Di is evaluated by the following 

formula: 

𝐷𝑖 = 𝑙1 + (𝑙2−𝑙1) (

𝑖𝑁
10

− 𝑐𝑓

𝑓𝑑
) 

i= 1, 2, …………10.  

Where l1= lower limit of the Di class 

l2= upper limit of the Di class; fd= frequency of the Di class. 

cf = cumulative frequency of the class proceeding to the Di class.  
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d) Percentile 
 
Percentiles are ninety-nine points which divided the data in to hundred equal parts. Pi is the 

value corresponding to (iN)/100th observation after arranging the data in the increasing 

order.  

 

For grouped frequency distribution: 

First obtain the cumulative frequencies for the data. Then mark the class corresponding to 

which a cumulative frequency is greater than (iN)/100 for the first time. (Where fi = 

frequency of ith observation, N=∑ 𝑓𝑖
𝑛
𝑖=1 ) Then that class is Pi class. Then Pi is evaluated by the 

following formula:  

𝑃𝑖 = 𝑙1 + (𝑙2−𝑙1) (

𝑖𝑁
100

− 𝑐𝑓

𝑓𝑝
) 

Where i=1, 2, … , 100  

 l1= lower limit of the Pi class; l2= upper limit of the Pi class; fp= frequency of the Pi class. 

cf = cumulative frequency of the class proceeding to the Pi class;  

 

3.3.2 Mode 

 

The mode is the most frequent data value. Mode is the value of the variable which is 

predominant in the given data series. Thus in case of discrete frequency distribution, mode 

is the value corresponding to maximum frequency. Sometimes there may be no single mode 

if no one value appears more than any other. There may also be two modes (bimodal), three 

modes (trimodal), or more than three modes (multi-modal).  

 

For grouped frequency distributions:  

The modal class is the class with the largest frequency. After identifying modal class mode is 

evaluated by using interpolated formula. This formula is applicable when classes are of equal 

width.  

𝑀𝑜𝑑𝑒 = 𝑙1 + (𝑙2−𝑙1) (
𝑑1

𝑑1 + 𝑑2
) 

Where l1= lower limit of the modal class 

 l2= upper limit of the modal class 

d1 =fm-f0 and d2=fm-f1  

fm= frequency of the modal class 

 f0 = frequency of the class preceding to the modal class,  

 f1= frequency of the class succeeding to the modal class. 

 

3.4 Calculations of Measures of Central Tendency using R 

 

For measures of central tendency, we need to install package “psych” from CRAN.  Before we 

start executing these functions we must load package “psych”. 
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To install “psych” Package in R: 

In R Gui, Click on Packages menu and select the option “Install package(s)”, Select 0-cloud 

[https] from the country options and click on OK. Then a list of functions will be displayed. 

From that list select function “psych” and click on Install. 

 

To load “psych” package in R: 

In R Gui, Click on Packages menu and select the option “Load package”. List of installed 

packages will be shown. From that list select “psych” and click on OK. 

 

Examples solved using R 

 

1. Given the following data about average rainfall in every month in the year of 2017.  

Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

Rainfall 

(in mm) 

10 10 10 10 10 560 640 520 320 90 20 10 

 

Calculate Arithmetic, Geometric, Harmonic mean, Median and Mode, First quartile, 56th 

percentile and 3rd decile for the above data. 

 

R code: 
> #ungrouped data 

> rainfall = c(10, 10, 10, 10, 10, 560, 640, 520, 320, 90, 20, 10) 

> mean(rainfall) 

[1] 184.1667 

> geometric.mean(rainfall) 

[1] 46.69096 

> harmonic.mean(rainfall) 

[1] 17.92363 

> median(rainfall) 

[1] 15 

# we define a function mode as follows: 

> mode <- function(x) { 

+    uniqx <- unique(x) 

+    uniqx[which.max(tabulate(match(x, uniqx)))] 

+ } 

> mode(rainfall) 

[1] 10 

> quantile(rainfall, .25) 

 25%  

10  

> quantile(rainfall, .56) 

 56%  

31.2 

> quantile(rainfall,.3) 

30%  

10 
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2. The information about days and number of working hours for a week is given in the 

following table. Saturday and Sunday are holidays so working hours are not counted. 

Day Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

Working 

Hours 

NA 8 6 5.5 7 4.5 NA 

 

Calculate arithmetic, geometric, harmonic mean, median, mode, third quartile, 32nd 

percentile value and 8th decile of the above data. 

 

R code: 
> #ungrouped data with NA values  

> x=c(NA, 8, 6, 5.5, 7, 4.5, NA) 

> mean(x) 

[1] NA 

> # as NA is included mean is not calculated. We need to exclude NA values to 

calculate the mean of the given data. 

> mean(x, na.rm=TRUE) #na.rm represents remove NA values. 

[1] 6.2 

> geometric.mean(x, na.rm=TRUE) 

[1] 6.081111 

> harmonic.mean(x, na.rm=TRUE) 

[1] 5.962573 

> median(x, na.rm = TRUE) 

[1] 6 

> mode <- function(x) { 

+    uniqx <- unique(x) 

+    uniqx[which.max(tabulate(match(x, uniqx)))] 

+ } 

> y=na.omit(x)#to remove NA from the dataset. 

> mode(y) 

[1] 8 

> x=c(NA, 8, 6, 5.5, 7, 4.5, NA) 

> y=na.omit(x) 

> quantile(y,.75) 

75%  

  7 

> quantile(y,.32) 

 32%  

5.64 

> quantile(y,.8) 

80%  

7.2 

 

3. The table shows the scores obtained by a group of players in a test. Find the arithmetic, 

geometric, harmonic mean, median, mode and first quartile, 21st percentile and 6th decile of 

the scores. 

Scores 0 1 2 3 4 5 6 

Frequency 3 5 4 6 4 5 3 
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R code: 
> x=c(0, 1, 2, 3, 4, 5, 6) 

> f=c(3, 5, 4, 6, 4, 5, 3) 

> n=sum(f) 

> y=rep(x,f) 

> local({pkg <- select.list(sort(.packages(all.available = 

TRUE)),graphics=TRUE) 

+ if(nchar(pkg)) library(pkg, character.only=TRUE)}) 

> mean(y) 

[1] 3 

> geometric.mean(y) 

[1] 0 

> harmonic.mean(y) 

[1] 0 

> median(y) 

[1] 3 

> mode <- function(x) { 

+    uniqx <- unique(x) 

+    uniqx[which.max(tabulate(match(x, uniqx)))] 

+ } 

> mode(y) 

[1] 3 

> quantile(y,.25) 

 25%  

1.25  

> quantile(y,.21) 

21%  

  1 

> quantile(y,.6) 

60% 

 

4.  The following data represents the distribution of monthly electricity bills of the families 

in a society. Find Arithmetic, geometric, harmonic mean, median and mode, Q1, Q3, D7 and 

P68. 

Bill in 

(Rs.) 

0-200 200-400 400-600 600-800 800-1000 1000-

1200 

1200-

1400 

Frequency 1 3 11 14 9 4 2 

 

R code: 
> ub=c(200, 400, 600, 800, 1000, 1200, 1400) 

> lb=c(0,200, 400, 600, 800, 1000, 1200) 

> h=200 

> x=(lb+ub)/2 

> f=c(1, 3, 11, 14, 9, 4, 2) 

> n=sum(f) 

> am =sum(x*f)/n 

> am 

[1] 713.6364 

> gm=10^(sum(f*log10(x))/n) 

> gm 
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[1] 655.632 

> hm=n/sum(f/x) 

> hm 

[1] 570.1341 

> lcf=cumsum(f) 

> medc=min(which(lcf>n/2)) 

> med=lb[medc]+(n/2-lcf[medc-1])*h/f[medc] 

> med 

[1] 700 

> modc=which(f==max(f)) 

> mode=lb[modc]+h*((f[modc]-f[modc-1])/(2*f[modc]-f[modc-1]-f[modc+1] )) 

> mode 

[1] 675 

> q1c=min(which(lcf>n/4)) 

> q1=lb[q1c]+(n/4-lcf[q1c-1])*h/f[q1c] 

> q1 

[1] 527.2727 

> q3c=min(which(lcf>3*n/4)) 

> q3=lb[q3c]+(3*n/4-lcf[q3c-1])*h/f[q3c] 

> q3 

[1] 888.8889 

> d7c=min(which(lcf>7*n/10)) 

> d7=lb[d7c]+(7*n/10-lcf[d7c-1])*h/f[d7c] 

> d7 

[1] 840 

> p68c=min(which(lcf>68*n/100)) 

> p68=lb[p68c]+(68*n/100-lcf[p68c-1])*h/f[p68c] 

> p68 

[1] 820.4444 

 

3.5 References: 

 

1. R for Beginners, Emmanuel Paradis 

2. Descriptive Statistics, Vipul Publications, Mrs. M. J. Golba. 
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Chapter 4 
 

Measure of Dispersion 
 

 

Dr. Bhagat Gayval, Assistant Professor, Department of Statistics,  

K. C. College, Churchgate, Mumbai – 400 020. 

 

 

4.1 Range 

 

It is difference between the smallest and largest values of the data. The range is the size of 

the smallest interval which contains all the data and provides an indication of Statistical 

dispersion. It is measured in the same units as the data. Since it only depends on two of the 

observations, it is most useful in representing the dispersion of small data sets. 

Symbolically, Range=Max-Min 

 

Coefficient of Range =  
Max−Min

Max+Min
           

 

4.2 Quartile Deviation 

 

It is also measure of dispersion and it has cover 50% of data from all values. Quartile 

deviation (Q.D.) is given by formula: 

Q. D. =
1

2
(Q3 − Q1) 

Coefficient of Q.D. =
Q3−Q1

Q3+Q1
 

Where Q1 is the first quartile and Q3 is the third quartile of the distribution. 

 

4.3 Mean Deviation about ‘a’ 

 

Mean deviation is useful for finding the dispersion since it’s based upon all the observation 

and it is defined as the arithmetic mean of absolute deviations taken from any average or 

any value. 

It is defined as follows: 

Mean Deviation about a =
1

𝑛
∑|𝑥𝑖 − 𝑎|

𝑛

1

 

Where ‘a’ can be mean or median or mode or any specified value. 

In case of ungrouped/grouped frequency distribution 



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 3 – Measures of Central Tendency 
 

 
ISBN 978-93-80788-71-5 32 

 

Mean Deviation about a =
1

𝑁
∑ 𝑓𝑖|𝑥𝑖 − 𝑎|

𝑛

1

 

Coefficient of mean deviation:  

Coefficient of 𝐦𝐞𝐚𝐧 𝐝𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧 =  
Mean Deviation about a 

a
 

 

4.4 Variance 

 

Variance is measures how far a data set is spread out and it is defined as the arithmetic 

mean of squares of deviations of the given values taken from arithmetic mean. 

 

It is defined as 

 

𝑉𝑎𝑟 =
1

𝑛
∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

 

Where �̅� the mean, n is is the no. of observations of the data. 

 

4.5 Standard Deviation 

 

It is a measure that is used to quantify the amount of variation or dispersion of a set of data 

values. A low standard deviation indicates that the data points tend to be close to the 

expected value of the set, while a high standard deviation indicates that the data points are 

spread out over a wider range of values. 

 

It is defined as 

𝜎 = √
1

𝑛
∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (𝐶𝑉) =
𝜎

�̅�
× 100 

 

4.6 Examples 

 
4.6.1 Section A-Raw Data-R coding and Example 

 

Example – Find the range, Quartile Deviation, Mean deviation about median, Variance, 

Standard Deviation and their coefficients for the following data-  

25,29,30,17,19,30,18,28,31,33,26,28 
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# Range and Coefficient of range (Crange) 

 
> x<-c(25,29,30,17,19,30,18,28,31,33,26,28) 

> r<-range(x) 

> r 

[1] 17 33 

> diff(r) 

[1] 16 

> Crange =(max(x)-min(x))/(max(x)+min(x)) 

> Crange 

[1] 0.32 

#Quartile Deviation (QD) & Coefficient of QD 

> QD=(quantile(x,0.75)-quantile(x,0.25))/2 

> QD 

 > 3.25 

> CoeffQD=(quantile(x,0.75)-

quantile(x,0.25))/(quantile(x,0.75)+quantile(x,0.25)) 

> CoeffQD 

0.1214953 

 # Mean Deviation from median 

# Library (‘psych’) 

# mad function calculates Mean Deviation from median  

> mad(x) 

[1] 3.7065 

> cmd=(mad(x))/(median(x))        #calculated coefficient of mean deviation 

about median 

> cmd 

[1] 0.132375 

# Variance & CV 

> variance<-var(x)   #sample variance 

> variance 

[1] 28.87879 

> CV=(sd(x)*100)/mean(x) 

> CV 

[1] 20.53719 

# Standard Deviation(SD) & Standard Error (SE) 

> SD<-sd(x)  #sample standard deviation 

> psd=(SD*sqrt(length(x)-1))/ sqrt(length(x)) 

> psd     #population standard deviation  

[1] 5.145116 

> cv=(psd/mean(x))*100 

> cv 

[1] 19.66287 

 

4.6.2 Section B -ungrouped data set 

Example – Find the range, Quartile Deviation, Mean deviation, Variance, Standard Deviation 

and their coefficients for the following data-  

 

X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Frequency 5 14 21 23 60 80 86 125 112 93 56 43 32 24 22 16 
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# Range and Coefficient of range 
> grp=seq(0,15,by=1) 

> f=c(5,14,21,23,60,80,86,125,112,93,56,43,32,24,22,16) 

> data=rep(grp,f) 

> r<-range(data) 

> diff(r) 

[1] 15 

> coeffrange=(max(data)-min(data))/(max(data)+min(data)) 

> coeffrange 

[1] 1 

#Quartile Deviation (QD) & Coefficient of QD 

QD=(quantile(data,0.75)-quantile(data,0.25))/2 

> QD 

1.625  

> CoeffQD=(quantile(data,0.75)-

quantile(data,0.25))/(quantile(data,0.75)+quantile(data,0.25)) 

> CoeffQD 

0.220339 

 

# Mean Deviation from median 

# Library (‘psych’) 

# mad function calculates Mean Deviation from median  
> mad(data) 

[1] 2.9652 

> cmd=(mad(data))/(median(data))  #calculated coefficient of mean deviation 

about median 

> cmd 

[1] 0.4236 

 

# Variance & Coefficient of Variance (CV) 
> variance<-var(data) 

> variance 

[1] 9.548566 

 

# Standard Deviation(SD) & Standard Error (SE) 
> SD<-sd(data)  #sample standard deviation 

> psd=(SD*sqrt(length(data)-1))/ sqrt(length(data)) 

> psd     #population standard deviation  

[1] 3.088172 

> cv=(psd/mean(data))*100   

> cv 

[1] 40.66811 

 

4.6.3 Section C -Grouped data set 

Example – Find the range, Quartile Deviation, Mean absolute deviation, Variance, Standard 

Deviation for the following data-  

Age 20-30 30-40 40-50 50-60 60-70 

No. of person 25 42 28 15 10 
 

> grp=seq(0,15,by=1) 
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> f=c(5,14,21,23,60,80,86,125,112,93,56,43,32,24,22,16) 

> data=rep(grp,f) 

> cmd=(mad(data))/(median(data)) #calculated coefficient of mean deviation 

about median 

> cmd 

[1] 0.4236 

> SD<-sd(data)  #sample standard deviation 

> psd=(SD*sqrt(length(data)-1))/ sqrt(length(data)) 

> psd     #population standard deviation  

[1] 3.088172 

> cv=(psd/mean(data))*100 

> cv 

[1] 40.66811 

> lb = seq(20,60,10) 

> lb 

[1] 20 30 40 50 60 

> ub = seq(30,70,10) 

> ub 

[1] 30 40 50 60 70 

> midx = (lb+ub)/2 

> midx 

[1] 25 35 45 55 65 

> f = c(25,42,28,15,10) 

> y = rep(midx,f) 

> range = ub[length(ub)] - lb[1] #calculates range 

> range 

[1] 50 

> cf = cumsum(f) #calculates cumulative frequency of greter than type 

> cf 

[1]  25  67  95 110 120 

> q1_mincf = min(which(cf >= sum(f)/4)) 

> q1_mincf 

[1] 2 

> q1_l1 = lb[q1_mincf]; q1_l2 = ub[q1_mincf] 

> q1_l1;q1_l2 

[1] 30 

[1] 40 

> h = (q1_l2-q1_l1) 

> h 

[1] 10 

> first_quart = q1_l1 + (h*(sum(f)/4-cf[q1_mincf-1])/f[q1_mincf]) 

> first_quart 

[1] 31.19048 

> x_bar = sum(f*midx)/sum(f) 

> x_bar 

[1] 40.25 

> dev_mean = f * (midx - x_bar)^2 

> dev_mean 

[1] 5814.062 1157.625  631.750 3263.438 6125.625 

> variance = sum(dev_mean)/sum(f) 

> variance 

[1] 141.6042 
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4.7 Skewness and Kurtosis 

 

4.7.1 Skewness 

Lack of symmetry in distribution is called as Skewness.  We know that the Skewness can be 

positive or negative or zero. If the relation of mean>median>mode then it will be positive 

and curved as right tail. If the relation of mean<median<mode then it will get negative and 

curve as left tail. If the values of mean=median=mode then there is no Skewness. 

 

Mathematically measures of Skewness have studied as follows: 

(A) Absolute Skewness measures: 

I) Karl Person’s measure of Skewness=Mean-Mode=3(Mean-Median) 

II) Bowley’s measure of Skewness=(Q3-Q2)-(Q2-Q1) 

 

(B) Relative or coefficient of Skewness measures: 

I) Karl Person’s coefficient of Skewness 

 

𝑆𝐾𝑝 =
𝑀𝑒𝑎𝑛 − 𝑀𝑜𝑑𝑒

𝑆. 𝐷.
=

3(𝑀𝑒𝑎𝑛 − 𝑀𝑒𝑑𝑖𝑎𝑛)

𝑆. 𝐷.
 

If SKP>0 the curve is positively skewed, if SKP=0 then the curve is symmetric andz if SKP<0 

then the curve is said to be negatively skewed curve. 

II) Bowley’s coefficient of Skewness  

𝑆𝐾𝐵 =
(𝑄3 + 𝑄1 − 2𝑄2)

(𝑄3 − 𝑄1)
 

If SKB>0 the curve is positively skewed, if SKB=0 then the curve is symmetric and if SKB<0 

then the curve is said to be negatively skewed curve. 

III) Measures based on moments 

𝛽1 =
𝜇3

2

𝜇2
3 

 

Relative measure of Skewness 

𝛾1 = ±√𝛽1 
 

If 𝛾1 > 0 then the curve is positively skewed, if 𝛾1 = 0 then the curve is symmetric and if 

𝛾1 < 0 then the curve is negatively skewed curve. 

 

4.7.2 Kurtosis: 

 

Kurtosis enables us to have an idea about the flatness or peakedness of the frequency curve. 

Kurtosis is measuredly compared with normal distribution. Mainly Kurtosis will be defined 

by three types such as Leptokurtic, Mesokurtic and Platykurtic distribution.  

 

Mesokurtic distribution is as likely as normal distribution. In Leptokurtic distribution, the 

Kurtosis greater than Mesokurtic distribution and in Platykurtic distribution the Kurtosis is 

less than Mesokurtic distribution. 
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It is defined as follows: 

𝛽2 =
𝜇4

𝜇2
2     ,    𝛾2 = 𝛽2 − 3 

Where Platykurtic curve is defined as β2 < 3 or γ2< 0,  

Leptokurtic curve is defined as β2 > 3 or γ2>0, 

And Mesokurtic curve is defined as β2 = 3 or γ2=0. 

 

4.7.3 Examples 

 

Raw Data-R coding and Example 

 

Example – Find the Skewness and Kurtosis and for the following data-  

25,29,30,17,19,30,18,28,31,33,26,28 

 
> # Karl Person’s coefficient of Skewness 

> x<-c(25,29,30,17,19,30,18,28,31,33,26,28) 

> psd=(SD*sqrt(length(x)-1))/ sqrt(length(x)) 

> skp=(3*(mean(x)-median(x)))/ psd 

> skp 

[1] -1.859036 

> #Bowley’s coefficient of Skewness 

> a=quantile(x,0.75);  b=quantile(x,0.25);  c=2*quantile(x,0.5) 

> num=a+b-c;  denom=a-b 

> skb=num/denom;  skb 

-0.3846154  

> # Measure based on Moments 

> library(moments) 

> skw=skewness(x); skw 

[1] -0.6760079 

> cs=sqrt(abs(skw)) 

> coefficient=-(cs) 

> coefficient 

[1] -0.822197 

> # Kurtosis -based on Moments 

> library(moments) 

> kur=kurtosis(x) 

> kur 

[1] 2.068371 

> coefK=kur-3 

> coefK 

[1] -0.9316292 
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Chapter 5 
 

Correlation, Regression and Curve Fitting 
 

 

Dr. Asha A. Jindal, Associate Professor and Head, Department of Statistics,  

K. C. College, Churchgate, Mumbai – 400 020. 

 

 

5.1 Introduction 

 

Correlation analysis is used if interest to see the existence of relationship however if nature 

of the relationship between each of the independent variables and dependent variable is 

known then regression or mathematical equation/model can be developed. 

 

The objective of regression analysis is to investigate the relationship between interval 

variables. This analysis is employed to forecast/predict the worth of one variable on the idea 

of other variables. One will simply appreciate as most corporations and government 

establishments uses this statistical method to predict variables like product demand, 

interest rates, inflation rates costs of raw materials, labor price and so on. 

 

This method involves developing a mathematical equation that describes the relationship 

between the variable to be forecast (Dependent variable) and variables that the statistical 

professional believes are associated with the variable (i.e independent 

variables/explanatory variables/regressors) and are denoted by X1,X2,…..Xk (where K is 

number of independent variables). 

 

5.2 Linear regression model with one explanatory variable  

(Two variable regression model) 
 

 

Yi = β0 + β1Xi+ ei  

Y ̂= β̂0+ β̂1Xi  

êi  =  Yi - Yî = Yi- β̂0- β̂1Xi 

 

For given n pairs of observations on Y and X, we would like to determine the Sample 

Regression Function (SRF) in such a manner that sum of residuals  Σei is as small as possible. 

But Σei gives equal weights to the residuals of smaller as well as greater magnitude which 

result into Σei =0. To avoid this method of least square is used to obtain the estimates of β0 

and β1. In this method Σei2 is minimized as squaring ei gives more weight to the residuals of 

greater magnitude than that of smaller magnitude. The estimators obtain by this method also 

known as ordinary least square (OLS) estimators. 
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Correlation coefficient can be computed using the functions cor() or cor.test(): 

 cor() computes the correlation coefficient 

 cor.test() test for association/correlation between paired samples. It returns both 

the correlation coefficient and the significance level(or p-value) of the 

correlation . 

5.3 Examples 

 

1. Plot the Scatter diagram from the following pairs of values. Find the correlation 

coefficient and covariance between the sales (Rs. Lakhs) and expenses (Rs. Lakhs) 

from the data given below : 

Sales  50 50 55 60 65 65 65 60 60 50 

Expenses 11 13 14 16 16 15 15 14 13 13 

Also, calculate the regression equation of Sales on expenses. 

 

Solution: 
> x=c(50,50,55,60,65,65,65,60,60,50) 

> y=c(11,13,14,16,16,15,15,14,13,13) 

> plot(x,y,main="Scatter Plot",xlab="Sales",ylab="Expenses") 

 

 
 

#Correlation and Covariance 

#use-Specifies the handling of missing data. Options are all.obs (assumes no missing 

data - missing data will produce an error), complete.obs (listwise deletion) and 

pairwise.complete.obs (pairwise deletion) 
>data=data.frame(x,y) 

>cor(data, use="all.obs", method="pearson")  
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>cor(data, use="all.obs", method="spearman") 

 
>cov(data, use="complete.obs") 

 
 

# To examine significance of correlation coefficient: 

 
 

Interpretation : The p-value of the test is 0.006954, which is less than the significance level 

alpha = 0.05 We can conclude that sales and expenses are significantly correlated with a 

correlation coefficient of 0.7865 and p-value of 0.006954. 

 

# Simple Linear Regression 
> fit <- lm(y ~ x, data=data) 

> summary(fit) # show results 
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Interpretation: 

The fitted model is y=2.7222+0.19444x 

Since adjusted R2=0.57 => 57% of variation in sales is explained by independent 

variable expenses.  

 

i) H0 : β1=0        H1 : β1≠ 0 

F- statistic=12.98 and p-value=0.006954 < 0.01 , reject H0 and conclude that 
1̂  is significant 

at 1%  l.o.s. 

 

ii) Tests for regression coefficients 

H0   : 0 = 0   H1 : 0 ≠ 0 

Test statistics t = 
)ˆ(.

ˆ

0

0





ES
=0.865 , p value = 0.41212 > 0.01Do not reject H0.i.e. 0 is non 

significant. 

H0   : 1 = 0   H1 : 1 ≠ 0 

Test statistics t = 
)ˆ(.

ˆ

1

1





ES
= 3.603   p value = 0.00695 < 0.01 

Reject H0. 1 is significant 

 

# Other useful functions  
coefficients(fit) # model coefficients 

confint(fit, level=0.95) # CIs for model parameters  

fitted(fit) # predicted values 

residuals(fit) # residuals 

anova(fit) # anova table  

vcov(fit) # covariance matrix for model parameters  

influence(fit) # regression diagnostics 

 

2.  Fit a regression equation to the following data 

x 1 2 3 4 5 

y 20 150 550 1300 2500 

 

Simple Regression 
> x=1:5 

> y=c(20,150,550,1300,2500) 

> plot(x,y,main="Scatter Plot",xlab="X",ylab="Y", pch = 20, cex = 1.5) 
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> r1=lm(y~x) 

> r1 

 
> par(new=TRUE) 

> plot(x,r1$fitted,type="l") 

 

 
 

5.4 Curve Fitting 

 

The observed value of the two variables need not always show linear relationship between 

the two variables. If the scatter diagram indicates curvilinear relationship between two 

variables then one of the following equations may fit the given data: 

i. Quadratic Curve 

ii. Power Curve 

iii. Exponential Curve 

iv. Logarithmic Curve 
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Let y be the dependent variable and x be the independent variable. Assuming that paired 

observations on the variables x and y are available, fitting a curve is to obtain the value of 

constants involved in the equation by method of least squares. Using estimates of constants, 

equation can be obtained and hence,estimate of y from given value of x. 

Fitting Quadratic Second Degree polynomial Curve: 

The quadratic equation is y= a+bx+cx2 

 

5.5 Examples 

 

3. Fit a quadratic curve to the following data and estimate y when x=5. 

x 1 2 3 4 5 

y 35 100 200 350 540 

 
> x=1:5 

> y=c(35,100,200,350,540) 

> plot(x,y,main="Scatter Plot",xlab="X",ylab="Y") 

> r1=lm(y~poly(x,2,raw=TRUE)) 

> r1 

 
 

 
 

> par(new=TRUE) 

> plot(x,r1$fitted,type="l") 
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The quadratic equation is y=17-2.571x+21.429x2 

When x=5, estimate of y=539.87. 

Notes: 
# Codes for Third Order polynomial 

x=1:5 

y=c(20,150,550,1300,2500) 

plot(x,y) 

r1=lm(y~poly(x,3,raw=TRUE)) 

r1 

par(new=TRUE) 

plot(x,r1$fitted,type="l") 

 

Fitting Power Curve 

The power curveis of the form y=abx 

 

4. Fit a power curve to the following data and estimate y when x=6. 

x 1 2 3 4 5 

y 20 150 550 1300 2500 

 
> x=1:5 

> y=c(20,150,550,1300,2500) 

> plot(x,y) 
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> r1=lm(log(y)~log(x)) 

> r1 

 
> a=exp(r1$coeff[1]) 

> b=r1$coeff[2] 

> print(a) 

(Intercept)  

   19.57021  

> print(b) 

log(x)  

3.01627 

> par(new=TRUE) 

> plot(x,fit,type="l") 
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Fitting Exponential Curve 

The exponential curve is of the form y=abx 

 

5. Fit a curve of the type y=abxto the following data. 

x 1 3 5 7 

y 5 20 100 400 

 
> x=c(1,3,5,7) 

> y=c(5,20,100,400) 

> plot(x,y) 

 
 
> r1=lm(log(y)~x) 

> r1 

 
> a=exp(r1$coeff[1]) 

> b=exp(r1$coeff[2]) 

>print(a) 

(Intercept)  

   2.338121  

>print(b) 

x 

2.091279  

> fit=a*b^x 

> par(new=TRUE) 

> plot(x,fit,type="l") 
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Fitting Logarithm Curve 

The logarithmic curve is of the form y=a + b logx 

 

6. Fit a quadratic curve to the following data and estimate y when x=5. 

x 20 30 60 100 200 400 

y 15 17 20 21 23 24 

 
> x=c(20,30,60,100,200,400) 

> y=c(15,17,20,21,23,24) 

> plot(x,y) 

 

 
 

> r1=lm(y~log(x)) 

> r1 
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> par(new=TRUE) 

> plot(x,r1$fitted,type="l") 
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Chapter 6 
 

Time Series and Forecasting Techniques  
using R 

 

 

Mukesh Kumar Jain, CTO, VFS.GLOBAL, Mumbai, India 

 

 

6.1 Background 

 

In the bid to stay ahead of their competitors, companies are now collecting more and more 

data and perform deep analytics extensively and systematically to gain insights into user 

behaviour and provide unprecedented personalization to its users with the strategic 

objective of creating a distinctive competency. Today, analytics is an integral part of any 

business and organizations are investing in talent and upskilling them. Infact, now is a good 

time to get into the world of Analytics - to learn basics and start implementing, reap the 

benefits and ride this wave. 

 

6.2 Analytics Concepts 

 

Simply put, Analytics is scientific process of deriving insights from data in order to make 

business decisions. It involves the extensive use of data, statistical & quantitative analysis, 

explanatory and predictive models, as well as fact-based management to drive decision 

making & organisational action. With the increase in the availability of data, Analytics has 

now become a crucial differentiator that determines both the top line and the bottom line of 

any organisation.  

 

It is commonly observed that, Big Data is synonymously used for Analytics. In fact, some 

people will call any form or data or reports as Analytics as it is getting popular and quickly 

find its way into mainstream businesses. While the concept of ‘Analytics’ (also known as Data 

Analysis in the past) has been prevalent for more than 50 years in multiple forms which even 

included capturing numerical data in tables, performing manual analysis to derive industry 

insights and market trends, ‘Big Data’ as a concept is relatively new which has gained traction 

in the past 10 years globally. 

 

But recent developments indicate that the boundaries that define both these concepts are 

now blurring, with increased access to high end computing that also offers cost effective 

storage along with cheaper bandwidth which has now provides the opportunity to be able 

to make real-time analytics on large volumes of data. 
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6.3 Time Series 

 

Time series data is a sequence of observations collected from a process with equally spaced 

periods of time.  

 

Examples: 

 Dow Jones Industrial Averages  

 Daily data on sales  

 Monthly inventory  

 Monthly interest rates, costs  

 Forecasting power consumption 

 Daily closing prices of stock indices, and so on 

 

Essential of Good time series: 

 Data must be for a sufficient period 

 Equal time gap 

 Constant or normal period. 

 

6.4 Importance of Time Series 

 

There are many benefits of time series which can be written by us for business purposes 

 

Helpful for study of past behaviour 

Time series are very helpful in study of past behaviour of business. On this basis, we 

can invest our money in that type of business. It is duty of businessman to make time 

series of past sale or profit and see what is the trend of sale or profit in that type of 

business. 

 

Helpful in forecasting 

Forecasting is science of estimation. Today is the day of competition so if you have to 

win from competition then you must learn this science , this science can be utilized if 

we make time series and on the basis we can read the history and then we can decide 

what happen in future . Suppose if we can make the time series of past strategy of our 

competitor then on this basis we can estimate future strategy of our competitor and 

on this base we can change our strategy for defeating our competitor. 

 

Helpful in evaluating the achievements 

Time series is an equipment in your hand on this basis you can evaluate your business 

achievements if you did good, your performance shows your good face in the time 

series by up-word trend of your performance. If your business performance is very 

bad then you can make new policies to stable your business. 
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Helpful in comparison 

If we can calculate our two or more branches time series then we can compare the 

performance of our branches. On their performance we can give them rewards. 

 

6.5 Components of Time Series 

 

6.5.1 Secular Trend(T) 

 

Gradual long term movement (up or down). Easiest to detect 

e.g.. Population growth In India 

 

6.5.2 Cyclical Patterns(C) 

 

Periodic in nature. An up/down repetitive movement. Repeats itself over a long period of 

time  

e.g. Quarterly demand, things that are specific in early of the year, end of year, etc. 

 

6.5.3 Seasonal Pattern(S) 

 

Results from events that are periodic and recurrent in nature. 

e.g. Sales in festive seasons 

 

6.5.4 Irregular Component(I) 

 

Erratic movements that are not predictable because they do not follow a pattern. 

Disturbances or residual variation that remain after all the other behaviours have been 

accounted for.  e.g. Earthquake 

 

6.6 Forecasting using Time Series Techniques 

 

Creating Time Series model step by step is important to build the model and be able to 

compare multiple models and find the right one that accurately represent the data. Once you 

have the model in place, you can leverage that to forecast and continue to enhance the model. 

 

6.6.1 Accuracy Measurements 

 

The time series models are approximation of historic data and they are bound to have errors 

/ deviation from actuals. While using the time series techniques, you would come up with 

multiple models and you would need to use techniques to measure accuracy of the model. 

There are multiple models to measure error and accuracy. We will use Mean Absolute 

Percentage (MAPE) and Root Mean Square Error (RMSE) accuracy measurement models. To 

calculate the accuracy of the model, the actual values are compared with the forecasted 
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values and overall error is error is calculated. The simplest way to remember both the 

accuracy models is to read it backwards and perform calculations. 

 

a) Mean Absolute Percentage Error (MAPE) 

 

Here are the steps to calculate MAPE, take MAPE in reverse order 

1. “E” Find out error between forecasted and actual values 

2. “P” Find out percentage error on actual values (error / actual value) 

3. “A” Take absolute value of the error percentage 

4. “M” Take mean of all the percentage error 

Using this technique, we can find out the error for each of the model and compare to find the 

model that has the lowest MAPE value and use that model for forecasting. This model is 

around percentage of errors. 

 

b) Root Mean Square Error (RMSE) 

 

Here are the steps to calculate RMSE, take RMSE in reverse order 

1. “E” Find out error between forecasted and actual values 

2. “S” Take square of error 

3. “M” Take mean of all the squared errors 

4. “R” Take square root of all the percentage error 

Using this technique, we can find out the error for each of the model and compare to find the 

model that has the lowest RMSE value and use that model for forecasting. This model is 

similar to standard deviation. 

 

Here are the key models for time series forecasting  

 

6.6.2 Simple Moving Average (SMA) 

 

This is standard moving average, one can choose the time period (K) – and accordingly 

calculate the moving average. This is called “Simple Moving Average”. The time period can 

be Month or Weeks or days, etc. This moving average becomes the forecast for the next 

period. e.g. if you choose 3 months as the period, the average of 3 months Jan-Mar will be 

calculated and used as forecast for the 4th month (Apr). Similarly average of Feb-Apr is 

calculated and used that for forecasting the values for 5th month (May), and so on. 

 

The formula will be as follows: Ft+1=(Yt+Yt-1+Yt-2+Yt-3+……Yt-K+1)/K 

Where F is the forecasted value for time period “t+1” 

Y is actual value for all the time period “t”, “t-1”, “t-2” and so on upto “t-k+1” 

And K is the time period for which we will calculate simple moving average 

In simple moving average equal weightage is given to all the last “k” values 

Determining the value of “k”: 

Short term simple moving average responds quickly to changes in data given in underlying 

data while Long term simple moving average are comparably slow to react. 
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Tips: 

 If your data is more dependent on the recent values, use lower “k”. 

 If your data is dependent on long term trend, have higher value of “k”. 

 If you are dealing with data that repeats itself after certain interval (e.g. hourly, 

weekly cycle, monthly cycle, quarterly, and yearly festive season), appropriately 

choose the value of “K” 

 

Challenges: 

 Recent data should have more impact on forecasted sale. But Simple Moving Average 

assigns equal weight to recent & historical data 

 Simple Moving Average does not address trending and seasonality factors in the 

forecasted output. 

 

6.6.3 Weighted Moving Average (WMA) 

 

The Weighted Moving Average is improvised version of simple moving average. This time 

series model is based on applying weightage on each of the data point while calculating 

moving average. One need to choose the time period (K) – and provide weightage for each of 

the data points.  

 

Similar to simple moving average, the time period can be Month or Weeks or days, etc. This 

weighted moving average becomes the forecast for the next period. e.g. if you choose 3 

months as the period, apply the weight for each period and then take average of the time 

period (e.g. 3 months Jan-Mar) will be calculated and used as forecast for the 4th month (Apr). 

Similarly weighted average of Feb-Apr is calculated and used that for forecasting the values 

for 5th month (May), and so on. 

 

The formula will be as follows: 

Ft+1=(Wt*Yt+Wt-1*Yt-1+Wt-2*Yt-2+Wt-3*Yt-3+……Wt-k+1*Yt-K+1) 

Where F is the forecasted value for time period “t+1” 

Wt-Weight assigned to the values in time period “t”, “t-1”, “t-2” and so on upto “t-k+1” 

Yt- Actual value for all the time period “t”, “t-1”, “t-2” and so on upto “t-k+1” 

And K is the time period for which we will calculate weighted moving average 

These particular weights signify the relative importance of each term on the average. The 

sum of all the associated weights should be equal to 1. 

 

Determining the value of “k”: 

With weighted moving average, one can provide appropriate weights to each of the period. 

For e.g. one might want to provide more weightage to the most recent month (last month) 

compared to few months before that OR if you know the data is exhibiting a particular 

pattern which repeats itself every quarter, you might apply high weightage for data that is 

3 months old compared to data of last month (e.g. Jan is start of quarter and Mar is end of 

quarter, for predicting values for the month of April, it would be highly likely to exhibit 

patter of Jan more than Mar (if it follows quarterly pattern). In these cases one can provide 
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high weightage to the 1st data point, followed by lower for the 2nd data point and then the 

3rd one.  

 

Weightage Examples: 

 For value of K=3, and data that exhibits quarterly pattern, one might use the 

following weights: 

Case Weight1 Weight2 Weight3 Weight4 Total 

1. WMA3 0.6 0.3 0.1 0.0 1.0 

2. WMA3 0.2 0.3 0.5 0.0 1.0 

3. WMA4 0.1 0.1 0.1 0.7 1.0 

4. WMA4 0.25 0.25 0.25 0.25 1.0 

 

 WMA3 = Weighted Moving Average of K=3 

 WMA4 = Weighted Moving Average of K=4 

 Case 1. WMA3 – where the first month is provided higher weightage (ideal for data 

that exhibits quarterly behaviour) 

 Case 2. WMA3 – where the first month is provided lower weightage and higher for 

next month and highest for the 3rd month (ideal for data that would exhibit pattern 

based on the last month. If your sale is high in the last month, and you believe the 

data is moving / trending in certain direction – one would need to put more 

weightage) 

 Case 3. WMA4 – where the first 3 months is provided with very lower weightage 

and 4h month / latest month is given highest weightage. Typically used when you 

want to give some weightage for earlier month and majority of dependency to the 

last month. 

 Case 4. WMA4 – is similar to Simple Moving Average of K=4 – by distributing equal 

weightage. 

 

Challenges: 

 Determining the ideal weights for each of the time period could be a challenge 

 (we would see how to find this automatically in R) 

 Does not take into consideration learning from the last data point of estimated value 

vs actual value. 

 

6.6.4 Simple Exponential Smoothing (SES) 

Exponential smoothing is an adjustment technique which takes previous period's 

forecast, and adjusts it up or down based on what actually occurred in that period. It 

accomplishes this by calculating a weighted average of the two values. The formula 

takes the form: 

Ft+1 = α *Dt + (1 - α)* Ft  

Ft- Forecasted Sales in t period 

Dt- Actual Sales in t period 

α – Data Smoothing Factor 



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 6 – Time Series and Forecasting Techniques using R 
 

 
ISBN 978-93-80788-71-5 55 

 

α should lie in between 0 and 1 so that a part of difference between previous actual sale 

and forecasted sale is used in updating. If α is close to 1 then it has less smoothing effect 

and give greater weight to the recent changes in data. If α is close to 0 then it has greater 

smoothing effect and less responsive to recent changes in data. 

 

Case Exponent 

(0 <= Alpha <= 1) 

1. SES (0.2) 0.2 

2. SES (0.8) 0.8 

 

Challenges: 

 Determining the ideal value of alpha could be a challenge 

 (we would see how to find this automatically in R) 

 Does not take into consideration any trend in the data 

 

6.6.5 Double Exponential Smoothing 

 

Double exponential smoothing performs better forecasting if data has trending factor. It 

basically uses two parameters – α (data smoothing factor) and β (trend smoothing factor). 

The formula for double exponential smoothing is given by: 

   when  t=1 S1=X0,b1=X1-X0      

   when  t > 1 St=α*Xt+(1- α)*(St-1+bt-1),  

     bt=β*(St-St-1)+(1-β)*bt-1 

     Xt+1=St+bt 

α - Data Smoothing Factor 

                                                          β - Trend  Smoothing Factor  

                                                          St - Smoothing component of forecasted value 

                                                          bt - Trending component of forecasted value 

                                                          Xt+1 – Forecasted value 

                     α (Data Smoothing) should lie in between 0 and 1 

                     β (Trend Smoothing) should lie in between 0 and 1 

 

Challenges: 

 Determining the ideal value of alpha and beta could be a challenge 

 (we would see how to find this automatically in R) 

 Does not take into consideration any seasonality in the data 

 

6.6.6 Triple Exponential Smoothing (TES) 

 

In Triple Exponential Smoothing, it factors in multiple aspects to factor in seasonality in the 

data. 

Triple exponential smoothing is given by the formulas: 

   St=αXt/Ct-L+(1-α)(St-1+bt-1),     

   bt=β(St-St-1)+(1-β)*bt-1 
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   Ct=ϒ(Xt/St)+(1-ϒ)*Ct-L 

   Ft+1=(St+bt)*Ct-L 

   St- Data Smoothing Component of Forecasted Value 

   bt- Trend Smoothing Component of Forecasted Value  

   Ct- Season Smoothing Component of Forecasted Value 

   α- Data Smoothing Factor (0< α <1) 

   β- Trend Smoothing Factor (0< β <1) 

   ϒ- Season Smoothing Factor (0< ϒ <1)     

Challenges: 

 Determining the ideal value of alpha, beta & gamma could be a challenge 

 (we would see how to find this automatically in R) 

 

6.7 R Program for Time Series 

 

Here is a small snapshot of sales data (Filename: “MonthlySalesData.csv”) 

sales 

185041 

183819 

265239 

238523 

166799 

210087 

165960 

256837 

254980 

191314 

180391 

173324 

 

Here is the R code 
#Code for Time Series 

#Set the working directory 

install.packages("forecast") 

install.packages("TTR") 

install.packages("Metrics") 

install.packages("tseries") 

library(forecast) 

library(TTR) 

library(Metrics) 

library(tseries) 

#Reading the data 

sales <- read.csv("MonthlySalesData.csv") 

#look at the data 

View(sales) 

head(sales) 

tail(sales,10) 
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summary(sales) 

#Create time series from the input data, [,1] is for first column and all 

rows. freq = 12, is for 12 months. For quarters it will be freq = 4 

salests <- ts(sales[,1],start=1999,freq=12) 

#Let's view, what is the output 

Salests 

#Plot the sales data on Time Series 

plot(salests) 

# Simple Moving Average 

sma2 <- SMA(salests,n=2) 

sma3 <- SMA(salests,n=3) 

sma4 <- SMA(salests,n=4) 

sma24 <- SMA(salests,n=24) 

write.csv(sma2,"sma2.csv") 

write.csv(sma3,"sma3.csv") 

write.csv(sma4,"sma4.csv") 

write.csv(sma24,"sma24.csv") 

rmse(sales[3:nrow(sales),] , sma2[2:(nrow(sales)-1)]) 

rmse(sales[4:nrow(sales),] , sma3[3:(nrow(sales)-1)]) 

rmse(sales[5:nrow(sales),] , sma4[4:(nrow(sales)-1)]) 

rmse(sales[25:nrow(sales),] , sma4[24:(nrow(sales)-1)]) 

 

# Weighted Moving Average 

wma2 <- WMA(salests,n=2,c(0.3,0.7)) 

wma3 <- WMA(salests,n=3,c(0.2,0.3,0.5)) 

wma4 <- WMA(salests,n=4,c(0.1,0.2,0.3,0.4)) 

rmse(sales[3:nrow(sales),] , wma2[2:(nrow(sales)-1)]) 

rmse(sales[4:nrow(sales),] , wma3[3:(nrow(sales)-1)]) 

rmse(sales[5:nrow(sales),] , wma4[4:(nrow(sales)-1)]) 

#STL means Seasonal Trend Decomposition using Loess ("LO"cal regr"ESS"ion) 

#Divides into Seasonal, Trend and Remainder. 

#s.window controls how rapidly the seasonal component can change 

seasonaldecom <- stl(salests, s.window="periodic") 

head(seasonaldecom,24) 

 

#Plot salests time series into three components - seasonal, trend and 

remainder 

plot(seasonaldecom) 

monthplot(salests) 

 

#Single Exponential Smoothening 

SES<-HoltWinters(salests, alpha=0.2, beta=FALSE, gamma=FALSE) 

 

#Predict SES, Prediction interval gives me upper and lower bound of the 

confidence interval 

salests.pred1<-predict(SES,n.ahead=12,prediction.interval=TRUE) 

salests.pred1 

 

#Plot the base graph 

plot.ts(salests, xlim = c(1999,2018),ylim=c(150000,500000)) 

 

lines(SES$fitted[,1],col="green")   #Fit the historical fitted values 

lines(salests.pred1[,1],col="blue") #Fit the future predicted values 
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lines(salests.pred1[,2],col="red")  #Fit the upper interval  

lines(salests.pred1[,3],col="red")  #Fit the lower interval  

 

#Double Exponential Smoothening to add TREND component 

DES<-HoltWinters(salests, alpha=0.2, beta=0.2, gamma=FALSE) 

 

#Predict DES, Prediction interval gives me upper and lower bound of the 

confidence interval 

salests.pred2<-predict(DES,n.ahead=12,prediction.interval=TRUE) 

salests.pred2 

 

#Plot the graph 

plot.ts(salests, xlim = c(1999,2018),ylim=c(150000,500000)) 

lines(DES$fitted[,1],col="green")   #Fit the historical fitted values 

lines(salests.pred2[,1],col="blue") #Fit the future predicted values 

lines(salests.pred2[,2],col="red")  #Fit the upper interval  

lines(salests.pred2[,3],col="red")  #Fit the lower interval  

 

 

#Triple Exponential Smoothening to add seasonality 

TES<-HoltWinters(salests, alpha = 0.2, beta=0.2, gamma=0.2) 

 

#Predict TES, Prediction interval gives me upper and lower bound of the 

confidence interval 

salests.pred3<-predict(TES,n.ahead=12,prediction.interval=TRUE) 

salests.pred3 

 

#Plot the graph 

plot.ts(salests, xlim = c(1999,2018),ylim=c(150000,500000)) 

lines(TES$fitted[,1],col="green")   #Fit the historical fitted values 

lines(salests.pred3[,1],col="blue") #Fit the future predicted values 

lines(salests.pred3[,2],col="red")  #Fit the upper interval  

lines(salests.pred3[,3],col="red")  #Fit the lower interval  

 

#Find the coefficients programatically 

#Single Exponential Seasoning, coefficient tells you the level 

SES_Auto<-HoltWinters(salests, beta=FALSE,gamma=FALSE) 

SES_Auto$alpha 

 

#Predict SES, Prediction interval gives me upper and lower bound of the 

confidence interval 

salests.pred4<-predict(SES_Auto,n.ahead=12,prediction.interval=TRUE) 

salests.pred4 

 

#Plot the graph 

plot.ts(salests, xlim = c(1999,2018),ylim=c(150000,500000)) 

 

lines(SES_Auto$fitted[,1],col="green")   #Fit the historical fitted values 

lines(salests.pred4[,1],col="blue") #Fit the future predicted values 

lines(salests.pred4[,2],col="red")  #Fit the upper interval  

lines(salests.pred4[,3],col="red")  #Fit the lower interval  

 

#Put Trend component, Double exponential smoothening 
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DES_Auto<-HoltWinters(salests, gamma=FALSE) 

DES_Auto$alpha 

DES_Auto$beta 

 

#Predict DES, Prediction interval gives me upper and lower bound of the 

confidence interval 

salests.pred5<-predict(DES_Auto,n.ahead=12,prediction.interval=TRUE) 

salests.pred5 

 

#Plot the graph 

plot.ts(salests, xlim = c(1999,2018),ylim=c(150000,500000)) 

lines(DES_Auto$fitted[,1],col="green")   #Fit the historical fitted values 

lines(salests.pred5[,1],col="blue") #Fit the future predicted values 

lines(salests.pred5[,2],col="red")  #Fit the upper interval  

lines(salests.pred5[,3],col="red")  #Fit the lower interval  

 

#Automatic Triple smoothening 

TES_Auto<-HoltWinters(salests) 

TES_Auto$alpha 

TES_Auto$beta 

TES_Auto$gamma 

 

#Predict TES, Prediction interval gives me upper and lower bound of the 

confidence interval 

salests.pred6<-predict(TES_Auto,n.ahead=12,prediction.interval=TRUE) 

salests.pred6 

 

#Plot the graph 

plot.ts(salests, xlim = c(1999,2018),ylim=c(150000,500000)) 

lines(TES_Auto$fitted[,1],col="green")   #Fit the historical fitted values 

lines(salests.pred6[,1],col="blue") #Fit the future predicted values 

lines(salests.pred6[,2],col="red")  #Fit the upper interval  

lines(salests.pred6[,3],col="red")  #Fit the lower interval  

 

#Creating File for final predited values 

Final_Predictions<-predict(TES_Auto,36) 

Final_Predictions 

write.csv(Final_Predictions,"PredictedValues.csv") 
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Chapter 7 
 

Probability and Probability Distributions  
 

 

Dr. Asha A. Jindal, Associate Professor and Head, Department of Statistics, 

K. C. College, Churchgate, Mumbai – 400 020. 

 

 

7.1 Probability 

 

In real life, experiments are classified into two categories. 

 Deterministics experiments 

 Probabilistics experiments 

 

In probability theory we are concerned with random experiments. The set of all possible 

outcomes of a random experiment is called as a sample space. 

 

In computing probabilities of different events using R software we use function choose (n,r) 

which gives the value of number of combination of n objects taken r at a time(order is not 

important) whereas function factorial (n)/factorial (n-r) gives the value of number of  n 

objects taken r at a time(order is important). 

 

If a random experiment results in ‘n’ equally likely, mutually exclusive and exhaustive cases 

and if ‘m’ of them are favourable to the event A then the probability of event A is the ratio of 

m to n. 

 

P(A) =  
𝑚

𝑛
  =

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑡𝑜 𝑒𝑣𝑒𝑛𝑡 𝐴

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑐𝑎𝑠𝑒𝑠
   

 

1) calculate  a) 10C3 b)8C4 c) 9P3  d) 5P2 . 

 

Solution: 
> al=choose (10,3) 

> al 

[1] 120 

> a2=choose (8,4) 

> a2 

[1] 70 

> a3=factorial (9)/factorial (9-3) 

> a3 

[1] 504 

> a4=factorial (5)/factorial (5-2) 

> a4 

[1] 20 
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2) In a group of 6 boys and 4 girls, four children are to be selected. In how many 

different ways can they be selected such that at least one boy should be there?  

 

Solution: 
> q= (choose (6,1) *choose (4,3) +choose (6,2) *choose (4,2) +choose (6,3) 

*choose (4,1) +choose(6,4) *choose (4,0)) 

> q 

[1] 209 

  
3) From a group of 7 men and 6 women, five persons are to be selected to form a 

committee so that at least 3 men are there in the committee. In how many ways can it 

be done?  

 

Solution: 
> r =(choose (7,3) *choose (6,2) +choose (7,4) *choose (6,1) +choose (7,5) 
*choose (6,0)) 
> r 
[1] 756 

 

4) In how many different ways can the letters of the word 'CORPORATION' be arranged 

so that the vowels always come together?  

 

Solution: 
> s= (factorial (7)/factorial (2) *factorial (5)/factorial (3)) 
> s 
[1] 50400 

 

5) How many 3-letter words with or without meaning, can be formed out of the letters 

of the word, 'LOGARITHMS’, if repetition of letters is not allowed?  

 

Solution: 
> t=factorial (10)/factorial (10-3) 

> t 

[1] 720 

 

6) In how many different ways can the letters of the word, 'LEADING’, be arranged such 

that the vowels should always come together?  

 

Solution: 
> u=factorial (5) *factorial (3) 

> u 

[1] 720 

  

7) How many arrangements can be made out of the letters of the word, 

'ENGINEERING'?  

 

 

Solution: 
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> v=factorial (11)/ (factorial (2) ^factorial (3) *factorial (3) *factorial 

(2)) 

> v 

[1] 277200 

 

8) How many 6-digit telephone numbers can be formed if each number starts with 35 

and no digit appears more than once?  

 

Solution: 
> w=factorial (8)/factorial (8-4) 

> w 

[1]1680 

  

9) A box contains 4 red,3 white and 2 blue balls. Three balls are drawn at random. Find 

out the number of ways of selecting the balls of different colours?  

 

Solution: 
> X= (choose (4,1) *choose (3,1) *choose (2,1)) 

> x 

[1] 24 

 

10) What is the probability of drawing two Ace cards from well shuffled pack of 52 

playing cards? 

 

Solution: 
>y= (choose (4,2)/choose (52,2)) 

>y 

[1] 0.004524887 

 

11) A box contains 5 red and 7 blue marbles.A sample of 4 is drawn at random what is 

probability of selecting at least two blue marbles? 

Solution: 
>z=(choose (5,2) *choose (7,2) +choose (5,1) *choose (7,3) +choose (5,0) 

*choose (7,4))/ (choose(12,4)) 

> z 

[1] 0.8484848 

 

7.2 Probability Distributions 

 

Binomial Distribution  

R supports following functions related to binomial distribution with specified parameters. 

dbinom(x,n,p) It gives individual binomial probability at X=x. 

pbinom(x,n,p) It gives cumulative binomial probability function. P( X≤ x). 

qbinom(x,n,p) It gives quantile fuction. 

rbinom(m,n,p) It generates a random sample of size m from binomial distribution. 
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Similar functions starting with letter d, p, q and r are used in connection with different 

distributions. 

Following are some commonly used distributions with their R names. 

 

Distributions R name Additional Arguments 

Binomial binom Size, probability 

Poisson Pois Parameter lambda 

Hypergeometric hyper M, N-M, n 

Geometric geom probability 

Negative Binomial nbinom Size, probability 

Uniform unif min, max 

Exponential exp rate 

Normal norm mean, sd 

Log--normal lnorm meanlog, sdlog 

Cauchy cauchy location, scale 

Gamma gamma shape, scale 

Beta beta shape1, shape2, ncp 

Student’s t t df, ncp 

F f  df1, df2, ncp 

Chi-square chisq df, ncp 

Logistic logis location, scale 

Weibull weibull shape, scale 

Wilcoxon wilcox m. n  

 

1) If X~Bino (10,0.6). Find   a) P(X=0)    b) P(X=2)   c) P(X≤3)    d) P(X>5)  

 

Solution: 

Given : X~Bin (n=10, p=0.6) 
> a1=dbinom (0,10,0.6) 

> a1 

[1] 0.0001048576 

 b] P(X=2)  

> b1=dbinom (2,10,0.6) 

> b1 

[1] 0.01061683 

 c] P(X<=3)  

> c1=pbinom (3,10,0.6) 

> c1 

[1] 0.05476188 

 d] P(X>5)  

> d1=1-pbinom (5,10,0.6) 

> d1 

[1] 0.6331033 
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2) If X~P (3.2). Find a) P(X=0)    b) P(X=3)    c) P(X=5)    d) P(X<=1)    e) P(X>3)  

   f) P(X≥5) . 

 

Solution: 
> X~P(m=3.2) 

> a1=dpois (0,3.2) 

> a1 

[1] 0.0407622 

> b1=dpois (3,3.2) 

> b1 

[1] 0.222616 

> c1=dpois (5,3.2) 

> c1 

[1] 0.1139794 

> d1=ppois (10,3.2) 

> d1 

[1] 0.9995028 

> e1=1-ppois (3,3.2) 

> e1 

[1] 0.3974803 

> f1=1-ppois (5,3.2) 

> f1 

[1] 0.1054081 

 

3) If X~HyperGeo (N=25, M=5, n=3).  

Find a) P(X=0)   b) P(X=2)   c) P(X=5)   d) P(X≤1)   e) P(X>3)   f) P(X≥2). 

 

Solution: 

Given :X ~ HyperGeo (N = 25, M = 5, n = 3) 
> a1=dhyper (0,5,20,3) 

> a1 

[1] 0.4956522 

> b1=dhyper (2,5,20,3) 

> b1 

[1] 0.08695652 

> c1=dhyper (5,5,20,3) 

> c1 

[1] 0 

> d1=phyper (1,5,20,3) 

> d1 

[1] 0.9086957 

> e1=1-phyper (3,5,20,3) 

> e1 

[1] 0 

> f1=1-phyper (2,5,20,3) 

> f1 

[1] 0.004347826 
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4) Plot probability mass function (pmf)and distribution function for the following 

ramdom variables a)X~P (2.6)     b) X~Bino (8,0.65)  c) X~ HyperGeo (N=50, M=10, n=7)  

Solution: 

a) X~P (2.6) 
> m=2.6    

> x=0:10 

> p=dpois (x, m) 

> d=data.frame (x, p) 

> d 

 x p  

1. 0 0.0742735782  

2. 1 0.1931113034  

3. 2 0.2510446944  

4. 3 0.2175720684  

5. 4 0.1414218445  

6. 5 0.0735393591  

7. 6 0.0318670556  

8. 7 0.0118363349  

9. 8 0.0038468089  

10. 9 0.0011113003  

11. 10 0.0002889381  

> plot (x, p,"h") 

 

 
 

> cp=ppois(x, m) 

> cp1=round(cp,4) 

> d1=data.frame(x, cp1) 

> plot (x, cp1,"s") 
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b) X~ Bino (8,0.65)  
> n=8; p=0.65 

> x=0: n 

> bp=dbinom(x, n, p) 

> d=data.frame("x-values"=x,"probabilities"=bp) 

> d 

 x.values probabilities  

1 0 0.0002251875  

2 1 0.0033456434  

3 2 0.0217466823  

4 3 0.0807733916  

5 4 0.1875096590  

6 5 0.2785857791  

7 6 0.2586867948  

8 7 0.1372623809  

9 8 0.0318644813  

>plot (x, bp,"h") 
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> cp=pbinom (x, n, p) 

> cp1=round (cp,4) 

> d1=data.frame(x, cp1) 

> plot (x, cp1) 

 

 
> plot (x, cp1,"s") 

 
 

c) X ~ HyperGeo (N=50, M=10, n=7)  
> N=50; M=10; n=7 

> x=0: n 

> hp=dhyper (x, M, N-M, n) 

> d=data.frame(x, hp) 

> d 

 x hp  

1 0 1.866514e-01  

2 1 3.842822e-01  

3 2 2.964463e-01  

4 3 1.097949e-01  
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5 4 2.077201e-02  

6 5 1.967875e-03  

7 6 8.409722e-05  

8 7 1.201389e-06  

>plot (x, hp,"h") 

 
> cp=phyper (x, M, N-M, n) 

> cp1=round(cp,4) 

> di=data.frame(x, cp1) 

> di 

 x cp1  

1 0 0.1867  

2 1 0.5709  

3 2 0.8674  

4 3 0.9772  

5 4 0.9979  

6 5 0.9999  

7 6 1.0000  

8 7 1.0000  

>plot (x, cp1,"s") 

 

0 1 2 3 4 5 6 7

0.0
0.1

0.2
0.3

x

hp

0 1 2 3 4 5 6 7

0
.2

0
.4

0
.6

0
.8

1
.0

x

cp
1



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 7 – Probability and Probability Distributions 
 

 
ISBN 978-93-80788-71-5 69 

 

5) A set of similar fair coins are tossed 640 times with the following result – no. of  

Heads:   0 1 2 3 4 5 6 

Frequency: 7 64 140 210 132 75 12 

Fit the binomial distribution to the data. 

 

Solution: 
> x=0:6 

> f=c (7,64,140,210,132,75,12) 

> m=sum(x*f)/sum(f) 

> n=max(x) 

> p=m/n; q=1-p 

> px=dbinom (x, n, p) 

> px1=round(px,4) 

> ef=sum(f)*px1 

> ef1=round(ef,0) 

> d=data.frame(x, f,"expected frequency"=ef1) 

> d 

 x f expected.frequency  

1 0 7 9  

2 1 64 56  

3 2 140 145  

4 3 210 200  

5 4 132 154  

6 5 75 64  

7 6 12 11  

>plot (f, ef1, pch="x"); abline (0,1) 

 
 

6) Fit the Poisson distribution to the following data with respect to the 

Number of red blood corpuscles (x) per cell – x:  0 1 2 3 4 5 

no. of cells    142 156 69 27 5 1 

 

Solution: 
> x=0:5 

> f=c (142,156,69,27,5,1) 

x

x
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> m=sum(x*f)/sum(f) 

> px=dpois (x, m) 

> px=round(px,4) 

> ef=sum(f)*px 

> ef1=round(ef,0) 

>d=data.frame(x, f,"expected frequency"=ef) 

> d 

 x f expected.frequency  

1 0 142 147.16  

2 1 156 147.16  

3 2 69 73.56  

4 3 27 24.52  

5 4 5 6.12  

6 5 1 1.24  

>plot (f, ef1, pch="x"); abline (0,1) 

 
 

7) Plot the pmf of   a] X~Bino (30,0.05)     b]X~P (1.5) and comment on graph  

 

Solution: 

Given: X~Bino (30,0.05)                
> n=30; p=0.05 

> x=0: n 

> bp=dbinom (x, n, p) 

> d=data.frame("x-values"=x,"probabilities"=bp) 

> d 

 x.values probabilities  

1 0 2.146388e-01  

2 1 3.389033e-01  

3 2 2.586367e-01  

4 3 1.270496e-01  

5 4 4.513605e-02  

6 5 1.235302e-02  

7 6 2.708997e-03  

8 7 4.888415e-04  

9 8   7.396944e-05  
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10 9 9.516536e-06  

11 10 1.051828e-06  

12 11 1.006534e-07  

13 12 8.387780e-09  

14 13 6.112552e-10  

15 14 3.906518e-11  

16 15 2.193133e-12  

17 16 1.082138e-13  

18 17 4.690382e-15  

19 18 1.782894e-16  

20 19 5.926516e-18  

21 20 1.715570e-19  

22 21 4.299675e-21  

23 22 9.257674e-23  

24 23 1.694769e-24  

25 24 2.601619e-26  

26 25 3.286255e-28  

27 26 3.326169e-30  

28 27 2.593504e-32  

29 28 1.462502e-34  

30 29 5.308539e-37  

31 30 9.313226e-40  

> plot (x, bp,"h") 

 

 
 
> cp=pbinom (x, n, p) 

> cp1=round (cp,4) 

> d1=data.frame(x, cp1) 

> plot (x, cp1) 
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> plot (x, cp1,"s") 

 
> # b]X~P (1.5) # 

> m=1.5 

> x=0:10 

> p=dpois (x, m) 

> d=data.frame(x, p) 

> d 

 x p  

1 0 2.231302e-01  

2 1 3.346952e-01  

3 2 2.510214e-01  

4 3 1.255107e-01  

5 4 4.706652e-02  

6 5 1.411996e-02  

7 6 3.529989e-03  

8 7 7.564262e-04  

9 8 1.418299e-04  

10 9 2.363832e-05  

11 10 3.545748e-06  

> plot (x, p,"h") 
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> cp=ppois (x, m) 

> cp1=round(cp,4) 

> d1=data.frame(x, cp1) 

> plot (x, cp1,"s") 

 
8) X ~ Negative Bin (r=2, P= 0.05) then compute 

i. P(X=0), P(X=1),P(X≤1), P(X≥2) 

ii. Evaluate Nbinomial probabilities and plot the graph of p.m.f and c.d.f. 

 

Solution:i. 
> dnbinom(0,2,0.05) 

[1] 0.0025 

> dnbinom(1,2,0.05) 

[1] 0.00475 

> pnbinom(1,2,0.05) 

[1] 0.00725 

> 1-pnbinom(1,2,0.05) 

[1] 0.99275 

ii) 
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> p=0.05;r=2 

> x=0:10 

> nbp=dnbinom(x,r,p) 

> d=data.frame("X-Value"=x,"Probability"=nbp) 

>  d 

 X.X.Value Probability  

1 0 0.00250000  

2 1 0.00475000  

3 2 0.00676875  

4 3 0.00857375  

5 4 0.01018133  

6 5 0.01160671  

7 6 0.01286411  

8 7 0.01396675  

9 8 0.01492696  

10 9 0.01575624  

11 10 0.01646527  

> plot(x,nbp,"h") 

 

 
> cp1=round(cp,4)#round function round off cp values upto 4 decimal 

> d1= data.frame(x,cp1) 

> d1 

 x cp1  

1 0 0.0025  

2 1 0.0073  

3 2 0.0140  

4 3 0.0226  

5 4 0.0328  

6 5 0.0444  

7 6 0.0572  

8 7 0.0712  

9 8 0.0861  

10 9 0.1019  

11 10 0.1184  

> plot(x,cp1) #Just points are plotted 
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> plot(x,cp1,"s") #It gives step function 

 
 

9) Fit the Negative Binomial Distribution to following data: 

X:0 1 2 3 4 5 

f: 213 128 37 18 4 5 

 

Solution: 
> x=0:5;f=c(213,128,37,18,3,1) 

> m=sum(f*x)/sum(f) 

> var=(sum(f*x*x)/sum(f))-m*m 

> p=m/var;q=1--p;r=m*p/q 

> px=dnbinom(x,r,p) 

> px1=round(px,5) 

> ef=sum(f)*px1 

> ef1=round(ef,0) 

> d=data.frame(x,f,"exp.freq."=ef1) 
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> d 

 x f exp.freq  

1 0 213 379  

2 1 128 19  

3 2 37 2  

4 3 18 0  

5 4 3 0  

6 5 1 0  

> plot(f,ef1,pch="x");abline(0,1) #pch gives the point markers 

 
 

10) Let X~  N (50,40). Find P (X≤60), P(X≥100) , P(10≤X≤20) and P(X≤k)=0.293. 

 

Solution: 
> mu=50; sd=sqrt(40) 

> p1=pnorm(60,mu,sd) 

> p1 

[1] 0.9430769 

> p2=1-pnorm(100,mu,sd) 

> p2 

[1] 1.332268e-15 

> p3=pnorm(20,mu,sd)-pnorm(10,mu,sd) 

> p3 

[1] 1.050591e-06 

> p4=qnorm(0.293,mu,sd) 

> p4 

[1] 46.55538 

 

11)  Fit a normal distribution to the following data of height (in cms) of 200 Indian 

adult males  

 

Height in cms 144-150 150-156 156-162 162-168 168-174 174-180 180-186 

No of Adults 3 12 23 52 61 39 10 
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Solution: 
> l1=seq(144,180,6) 

> u1=seq(150,186,6) 

> f=c(3,12,23,52,61,39,10) 

> x=(l1+u1)/2 

> n=sum(f) 

> k=length(f) 

> m=sum(f*x)/n;v=sum(f*(x-m)^2)/n;sd=sqrt(v) 

> l1=c(-9999,l1,186) 

> cp=pnorm(l1,m,sd) 

> p=diff(cp) 

> p=c(p,1-cp[k+2]) 

> u1=c(144,u1,9999);f=c(0,f,0) 

> ef=round(n*p,0) 

> d=data.frame("Lower Limit"=l1,"Upper Limit"=u1,"Obs.freq"=f,"prob"=p,"cum 

prob"=cp,"expfreq"=ef) 

> d 

 Lower.Limit Upper.Limit Obs.freq prob  cum.prob  expfreq 

1   -9999 144 0 0.0009277682 0.0000000000 0 

2 144 150 3 0.0085408285 0.0009277682 2 

3  150 156 12 0.0474590553 0.0094685967 9 

4 156 162 23 0.1504843558 0.0569276520 30 

5  162 168 52 0.2727415211 0.2074120077 55 

6 168 174 61 0.2828190953 0.4801535289 57 

7 174 180 39 0.1677990586 0.7629726242 34 

8   180 186 10 0.0569156032 0.9307716828 11 

9  186 9999 0 0.0123127140 0.9876872860 2 

> plot(f,ef,xlab="obs.freq",ylab="exp.freq","p") 

> abline(0,1) 

 

 
 

12)   Find    a) P( X ≤ 0.8) b) P (X > 0.5) 

If,  i. 𝐗~𝐍𝐨𝐫𝐦𝐚𝐥(𝟐, 𝟏. 𝟓)  ii. 𝐗~𝐍𝐨𝐫𝐦𝐚𝐥(𝟎, 𝟏) iii.  𝐗~𝐄𝐱𝐩(𝟏. 𝟓) iv. 𝐗~𝐛𝐞𝐭𝐚(𝟐, 𝟏. 𝟓) 

v.  𝐗~𝐆𝐚𝐦𝐦𝐚(𝟐, 𝟏. 𝟓)   vi. 𝐗~𝐂𝐡𝐢𝐒𝐪(𝟏𝟎)  vii.  𝑿~𝒕(𝟖)  viii.  𝑿~𝑭(𝟏𝟎, 𝟏𝟎) 

ix. 𝐗~𝐔(𝟎, 𝟓) 
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Solution: 
> a=pnorm(0.8,2,sqrt(1.5),lower.tail=1) 

> a 

[1] 0.1635934 

> b=pnorm(0.5,2,sqrt(1.5),lower.tail=0) 

> b 

[1] 0.8896643 

> x=seq(-2,6,by=0.02) 

> p=dnorm(x,2,sqrt(1.5)) 

> plot(x,p) 

 

 
> a=pnorm(0.8,0,sqrt(1),lower.tail=1) 

> a 

[1] 0.7881446 

> b=pnorm(0.5,0,sqrt(1),lower.tail=0) 

> b 

[1] 0.3085375 

> x=seq(-3,3,by=0.02) 

> p=dnorm(x,0,sqrt(1)) 

> plot(x,p) 

 

 
> a=pexp(0.8,1.5,lower.tail=1) 
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> a 

[1] 0.6988058 

> b=pexp(0.5,1.5,lower.tail=0) 

> b 

[1] 0.4723666 

> x=seq(0,10,by=0.02) 

> p=dexp(x,1.5) 

> plot(x,p) 

 

 
> a=pgamma(0.8,2,1.5) 

> a 

[1] 0.3373727 

> b=pgamma(0.5,2,1.5,lower.tail=0) 

> b 

[1] 0.8266415 

> x=seq(0,10,by=0.02) 

> p=dgamma(x,2,1.5) 

> plot(x,p) 

 

 
> a=pbeta(0.8,2,1.5) 

> a 

[1] 0.803226 
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> b=pbeta(0.5,2,1.5,lower.tail=0) 

> b 

[1] 0.6187184 

> x=seq(0,1,by=0.02) 

> p=dbeta(x,2,1.5) 

> plot(x,p) 

 

 
> a=pchisq(0.8,10) 

> a 

[1] 6.124333e-05 

> b=pchisq(0.5,10,lower.tail=0) 

> b 

[1] 0.9999934 

> x=seq(0,20,by=0.02) 

> p=dchisq(x,10) 

> plot(x,p) 

 
> a=pt(0.8,8) 

> a 
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[1] 0.7765933 

> b=pt(0.5,8,lower.tail=0) 

> b 

[1] 0.315268 

> x=seq(-10,10,by=0.02) 

> p=dt(x,8) 

 

 
> a=pf(0.8,10,10) 

> a 

[1] 0.3655069 

> b=pf(0.5,10,10,lower.tail=0) 

> b 

[1] 0.8551542 

> x=seq(0,10,by=0.02) 

> p=df(x,10,10) 

> plot(x,p) 

 
> a=punif(0.8,0,5) 

> a 

[1] 0.16 
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> b=punif(0.5,0,5,lower.tail=0) 

> b 

[1] 0.9 

> x=seq(0,5,by=0.02) 

> p=dunif(x,0,5) 

> plot(x,p) 

 

 
 

 



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 8 – Sampling Distribution and Central Limit Theorem using R 
 

 
ISBN 978-93-80788-71-5 83 

 

Chapter 8 
 

Sampling Distribution and Central Limit 
Theorem using R 

 

 

Dr. Rajendra Nana Chavhan, Assistant Professor Department of Statistics,  

K. C. College, Churchgate, Mumbai – 400 020. 

 

 

8.1 Introduction 

 

In this chapter, I have demonstrated the sampling distribution of some well-known statistics 

as sample mean, sample variance and sample median. I used Poisson, Normal and 

Exponential distributions. I have also demonstrated the central limit theorem using 

sampling distributions. 

 

8.2 Sampling Distribution 

 

The sampling distribution of statistic is the distribution of statistic, considered as a random 

variable, when derived from random sample of size 𝑛. It may be considered as distribution 

of the statistic for all possible random samples from the same population of a given size. I 

have demonstrated sampling distribution of  

 

1. Sample mean of discrete random variable with probability function 

2. Sample mean of 𝑋~𝐸𝑥𝑝(1.2) 

3. Sample variance of 𝑋~𝑁(5,9) 

4. Sample median where 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(3.1) 

 

One can extend the study of sampling distributions with other sample statistic and 

distributions. This sampling distributions can be used for determining empirical 

probabilities.   

 

Procedure for studying the sampling distribution 

I used the simulation technique for studying the sampling distribution of different statistic 

using well known discrete as well as continuous probability distributions. I used sample size 

𝑛 = 5, 10, 25 and 50, and 1000 repetitions. I used following steps 

 

Step 1.  Drawing of random sample from considered population. 

Step 2.  Calculation of sample statistic for different sample size (𝑛 = 5, 15, 25 and 50) 
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Step 3.  

 

Comparison of population value with expected value of sample statistic for 
different sample size (𝑛 = 5, 15, 25 and 50) i.e. comparison of mean. 

Step 4.  Comparison of variation of sample statistic for different sample size (𝑛 =
5, 15, 25 and 50) by studying variance. 

Step 5.  Drawing of histogram for overall comparison. 

 
8.2.1  

 

Sampling distribution of sample mean of discrete random variable with 
probability function 

   

Consider the following probability distribution 

𝑋 : 0 1 2 3 

𝑃(𝑋 = 𝑥) : 0.1 0.4 0.3 0.2 

Here 𝐸(𝑋) = 1.6 and 𝑉𝑎𝑟(𝑋) = 0.84, we study the sampling distribution of sample mean. We 

now that 𝐸(�̅�) = 1.6 and 𝑉𝑎𝑟(�̅�) =
0.84

𝑛
. I have written R-Program 1 for studying the 

sampling distribution of sample mean for above discrete probability distribution. 

 

R-Program 1: R code for studying Sampling distribution of sample mean of 

discrete random variable 

 
set.seed(1)    #for producing the same sequence of random variable every time 
n=50;                           #sample size 

rep=1000;                       #repetitions 

xv=c(0,1,2,3)                   #X values 

prob=c(0.1,0.4,0.3,0.2)         #Probability Values 

#random sample from Discrete Distribution 

x1=sample(xv,n*rep,replace = TRUE,prob=prob);     

x=matrix(x1,rep,n)              #arrangement of random numbers in matrix 

s.mean5=rowMeans(x[,1:5])       #sample mean n=5 

s.mean10=rowMeans(x[,1:10])     #sample mean n=10 

s.mean25=rowMeans(x[,1:25])     #sample mean n=25 

s.mean50=rowMeans(x[,1:50])     #sample mean n=50  

s.mean=data.frame(s.mean5,s.mean10,s.mean25,s.mean50)  #bind all means 

apply(s.mean,2,mean);apply(s.mean,2,var)   #Calculation of mean and variance 

par(mfrow=c(2,2)); 

hist(s.mean5,xlab = "(a)",main="n=5"); 

hist(s.mean10,xlab = "(b)",main="n=10"); 

hist(s.mean25,xlab = "(c)",main="n=25"); 

hist(s.mean50,xlab = "(d)",main="n=50") 

We put the numerical output of R-Program 1, i.e. five point summary, mean and variance of 

sample mean of sizes 𝑛 = 5, 15, 25 and 50 in the Table 1. 

 

Table 1: Descriptive statistics of sample mean of discrete distribution 

Sample size(𝒏) Minimum Q1 Q2 Mean Q3 Maximum Variance 

5 0.40 1.20 1.60 1.572 1.80 2.80 0.1719 

10 0.80 1.40 1.60 1.587 1.80 2.50 0.0898 
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25 1.12 1.44 1.60 1.587 1.72 2.20 0.0358 

50 1.14 1.52 1.60 1.600 1.68 2.04 0.0173 

One can see that as sample increases mean of sample mean approaches to population mean 

and variances approaches to 
0.84

𝑛
. We can also see the shape of the sample means for 

considered sample sizes from Figure 1. 

 

 
Figure 1:  Sampling distribution of sample mean of discrete probability distribution 

for sample size (a) 𝐧 = 𝟓 (b) 𝐧 = 𝟏𝟎 (c) 𝐧 = 𝟐𝟓 and (d) 𝐧 = 𝟓𝟎. 
 
One can observe the overall shape, changing pattern of shape, variation, outliers, Skewness, 

outliers etc. of sample mean from Figure 1.   We can conclude that mean of sample mean is 

concentrating towards the population mean  𝐸(𝑋) = 1.6 whereas variation decreases. 
 

 

8.2.2 Sampling distribution of sample mean where 𝑿~𝑵(𝟏𝟎, 𝟒) 

 

Here I studied the sampling distribution of sample mean where parent population is normal 

with mean 10 and variance 4. I have written the following R-Program 2 for studying 

Sampling distribution of sample mean where 𝑋~𝑁(10,4). 

 

R-Program 2:  R code for studying Sampling distribution of sample mean of 

𝑿~𝑵(𝟏𝟎, 𝟒) 

 
set.seed(25)    #for producing the same sequence of random variable everytime 

n=50;                           #sample size 

rep=1000;                       #repetitions 

x1=rnorm(rep*n,10,2);           #random sample from Population N(10,4) 

x=matrix(x1,rep,n)              #arrangement of random numbers in matrix 
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s.mean5=rowMeans(x[,1:5])       #sample mean n=5 

s.mean10=rowMeans(x[,1:10])     #sample mean n=10 

s.mean25=rowMeans(x[,1:25])     #sample mean n=25 

s.mean50=rowMeans(x[,1:50])     #sample mean n=50  

s.mean=data.frame(s.mean5,s.mean10,s.mean25,s.mean50)  #bind all means 

summary(s.mean) #gives six point summary(min,Q1,Q2,mean,Q3 and max)            

apply(s.mean,2,var) #Calculation of Variance 

par(mfrow=c(2,2)); 

hist(s.mean5,xlab = "(a)",main="n=5"); 

hist(s.mean10,xlab = "(b)",main="n=10"); 

hist(s.mean25,xlab = "(c)",main="n=25"); 

hist(s.mean50,xlab = "(d)",main="n=50") 

 

 
Figure 2:  

 

Sampling distribution of sample mean of  𝑿~𝑵(𝟏𝟎, 𝟒) for sample of sizes 

(a) 𝐧 = 𝟓 (b) 𝐧 = 𝟏𝟎 (c) 𝐧 = 𝟐𝟓 and (d) 𝐧 = 𝟓𝟎. 

 

Figure 2 shows the histogram for sample mean of sizes (a) n = 5 (b) n = 10 (c) n = 25 and 

(d) n = 50 where parent population is 𝑁(10,4). One can observe the frequency distribution, 

overall shape of sample mean of normal distribution having mean 10 and variance 4. As 

sample size increases, sample mean gets closer to population mean with decrement in 

variances and spread. This can be confirmed from descriptive statistics given in Table 2. 

Numerical output of R-Program 2, i.e. five point summary, mean and variance of sample 

mean of sizes 𝑛 = 5, 15, 25 and 50 is given in the Table 2. 

 

Table 2: Descriptive statistics of sample mean of 𝑵(𝟏𝟎, 𝟒) 

Sample size(𝒏) Minimum Q1 Q2 Mean Q3 Maximum Variance 

5 6.630 9.388 10.030 10.005 10.598 12.763 0.817 

10 7.625 9.549 10.016 9.994 10.432 11.813 0.407 
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25 8.827 9.716 9.993 9.989 10.278 11.050 0.156 

50 8.961 9.812 10.000 10.002 10.204 10.971 0.076 

 

8.2.3 Sampling distribution of sample variance where 𝑿~𝑬𝒙𝒑(𝟏. 𝟐) 

 

Here I studied the sampling distribution of sample variance where sample is drawn from 

exponential distribution with parameter 1.2. I have written the following R-Program 3 for 

studying sampling distribution of sample variances where 𝑋~𝐸𝑥𝑝(1.2) 

 

R-Program 3:  R code for studying Sampling distribution of sample variance of 

𝑿~𝑬𝒙𝒑(𝟏. 𝟐) 

 

set.seed(25)   #for producing the same sequence of random variable every time 

n=50;                  #sample size 

rep=1000;              #repetitions 

x1=rexp(rep*n,1.2);#random sample from Population Exponential with mean=1/1.2 

x=matrix(x1,rep,n);              #arrangement of random numbers in matrix 

s.var5=apply(x[,1:5],1,var);         #sample variance n=5 

s.var10=apply(x[,1:10],1,var);       #sample variance n=10 

s.var25=apply(x[,1:25],1,var);       #sample variance n=25 

s.var50=apply(x[,1:50],1,var);       #sample variance n=50 

s.var=data.frame(s.var5,s.var10,s.var25,s.var50)  #bind all variances 

summary(s.var)  #gives six point summary(min,Q1,Q2,mean,Q3 and max)            

apply(s.var,2,var) #Calculation of Variance 

par(mfrow=c(2,2)); 

hist(s.var5,xlab = "(a)",main="n=5"); 

hist(s.var10,xlab = "(b)",main="n=10"); 

hist(s.var25,xlab = "(c)",main="n=25"); 

hist(s.var50,xlab = "(d)",main="n=50") 

Numerical output of R-Program 3, i.e. five point summary, mean and variance of sample 

variance of 𝐸𝑥𝑝(1.2)  of sizes 𝑛 = 5, 15, 25 and 50 is given in the Table 3. 

 

Table 3: Descriptive statistics of sample variance of 𝑬𝒙𝒑(𝟏. 𝟐) 

Sample size(𝑛) Minimum Q1 Q2 Mean Q3 Maximum Variance 

5 0.004 0.182 0.398 0.692 0.829 14.281 0.914 

10 0.029 0.301 0.500 0.678 0.852 7.894 0.405 

25 0.128 0.416 0.613 0.697 0.844 3.696 0.171 

50 0.194 0.494 0.649 0.695 0.831 2.267 0.080 

 

Figure 3 shows the histogram of sample variance of sizes (a) n = 5 (b) n = 10 (c) n = 25 and 

(d) n = 50 where parent population is exponential with parameter 1.2. From Figure 3, one 

can see that distribution of sample variance is positively skewed. 
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Figure 3:  

 

Sampling distribution of sample variance of  𝑿~𝑬𝒙𝒑(𝟏. 𝟐) for sample of 

sizes (a) 𝐧 = 𝟓 (b) 𝐧 = 𝟏𝟎 (c) 𝐧 = 𝟐𝟓 and (d) 𝐧 = 𝟓𝟎. 

 

8.2.4 Sampling distribution of sample median where 𝑿~𝑷𝒐𝒊𝒔(𝟑. 𝟏): 

Here I studied the sampling distribution of sample median where sample is drawn from 

Poisson distribution with mean 3.1. I have written the following R-Program 4 for studying 

sampling distribution of sample median where 𝑋~𝑃𝑜𝑖𝑠(3.1). 

 

R-Program 4:  

 

R code for studying sampling distribution of sample median of 

𝑿~𝑷𝒐𝒊𝒔 (𝟑. 𝟏) 
 

set.seed(25)   #for producing the same sequence of random variable every time 

n=50;                  #sample size 

rep=1000;              #repetitions 

x1=rpois(rep*n,3.1);    #random sample from Population Poisson with mean=3.1 

x=matrix(x1,rep,n);               #arrangement of random numbers in matrix 

s.med5=apply(x[,1:5],1,median);       #sample median n=5 

s.med10=apply(x[,1:10],1,median);       #sample median n=10 

s.med25=apply(x[,1:25],1,median);       #sample median n=25 

s.med50=apply(x[,1:50],1,median);       #sample median n=50 

s.med=data.frame(s.med5,s.med10,s.med25,s.med50)  #bind all Medians 

summary(s.med)  #gives six point summary(min,Q1,Q2,mean,Q3 and max)            

apply(s.med,2,var) #Calculation of Variance 

par(mfrow=c(2,2)); 

hist(s.med5,xlab = "(a)",main="n=5"); 

hist(s.med10,xlab = "(b)",main="n=10"); 

hist(s.med25,xlab = "(c)",main="n=25"); 

hist(s.med50,xlab = "(d)",main="n=50") 
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Table 3 contains the descriptive statistics of sample median for different sample sizes 

obtained from numerical output of R-Program 4.  

 

Table 3: Descriptive statistics of sample median of 𝑷𝒐𝒊𝒔𝒔(𝟑. 𝟏) 

Sample size(𝑛) Minimum Q1 Q2 Mean Q3 Maximum Variance 

5 1 2 3 2.976 4 6 0.9624 

10 1 2.5 3 2.944 3.5 5.5 0.4783 

25 2 3 3 2.924 3 5 0.2605 

50 2 3 3 2.943 3 4 0.1082 

 
Figure 4 shows histogram of sample median of Poisson with mean 3.1 which shows 

frequency distribution of sample median.   

 
Figure 4:  

 

Sampling distribution of sample median of  𝑿~𝑷𝒐𝒊𝒔(𝟑. 𝟏) for sample of 

sizes (a) 𝐧 = 𝟓 (b) 𝐧 = 𝟏𝟎 (c) 𝐧 = 𝟐𝟓 and (d) 𝐧 = 𝟓𝟎. 

 

8.3 Central Limit Theorem (CLT) 

 

If 𝑋1, 𝑋2, … . . 𝑋𝑛 is a random sample of size 𝑛 (large) from any probability distribution (either 

discrete or continuous) with finite mean 𝜇 and variance 𝜎2then sample mean �̅� =
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
 will 

tends to normal distribution with mean 𝜇 and variance 
𝜎2

𝑛
. Here I demonstrated the CLT for 

the following probability distributions 

1. Negative Binomial Distribution  

2. Continuous Uniform Distribution 
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I used 𝑛 = 10, 50, 100 and 250 for demonstration. Shapiro test is used to test normality. I 

have also plot histogram along with normal curve to asses the normality.   

 

8.3.1 Negative Binomial Distribution  

 

Consider 𝑋1, 𝑋2… 𝑋𝑛 is random sample from negative binomial with 𝑘 = 5 and 𝑝 = 0.7. Here 

𝑋 represents the number of failure before 𝑘 sucusses. I have written the following R-Program 

5 for studying sampling distribution of sample mean and to demonstrate the CLT where 

𝑋~𝑁𝐵(5,0.7). 

 

R-Program 5: R code for demonstration of CLT of 𝑿~𝑵𝑩(𝟓, 𝟎. 𝟕) 

 
set.seed(5)    #for producing the same sequence of random variable every time 

n=250;                  #sample size 

rep=1000;              #repetitions 

x1=rnbinom(rep*n,5,0.7);   #random sample from Negative Binomial k=5, p=0.7 

x=matrix(x1,rep,n);               #arrangement of random numbers in matrix 

s.mean10=apply(x[,1:10],1,mean);       #sample mean n=10 

s.mean50=apply(x[,1:50],1,mean);       #sample mean n=50 

s.mean100=apply(x[,1:100],1,mean);       #sample mean n=100 

s.mean250=apply(x[,1:250],1,mean);       #sample mean n=250 

nt10=shapiro.test(s.mean10);      #Normality test of sample mean n=10 

nt50=shapiro.test(s.mean50);      #Normality test of sample mean n=50 

nt100=shapiro.test(s.mean100);      #Normality test of sample mean n=100 

nt250=shapiro.test(s.mean250);      #Normality test of sample mean n=250 

#P-value of the normality test 

print(c(nt10$p.value,nt50$p.value,nt100$p.value,nt250$p.value))   

#Function from plotting Histogram with Normal curve 

hist_curve<-function(x){ 

  N=length(x);H=hist(x,breaks=50,xlab="",main="");dx=(H$breaks[2]-

H$breaks[1]); 

  x0=H$breaks;x1=c(x0[1]-dx/2,x0+dx/2); 

  lines(x1,N*dnorm(x1,mean(x),sd(x))*dx,col="blue") 

} 

par(mfrow=c(2,2)); 

hist_curve(s.mean10);title(main="n=10",xlab="(a)"); 

hist_curve(s.mean50);title(main="n=50",xlab="(b)"); 

hist_curve(s.mean100);title(main="n=100",xlab="(c)"); 

hist_curve(s.mean250);title(main="n=250",xlab="(d)"); 

 

Table 5 shows the P-value of Shapiro test of normality. 

 

Table 5: P-value for Shapiro test of normality 

Sample size(𝑛) 10 50 100 250 

P-value 0.0000 0.1241 0.3139 0.7999 
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CLT hold for 𝑛 = 50, 100, 250 which can be confirmed from P-value given in Table 5. In 

Figure 5, I used to draw histogram with normal curve. One can see the normal curve fits well 

for (b) n=50, (c) n=100 and (d) n=250. As sample size increases normal curve fits well. 

 

 
Figure 5:  Sampling distribution of sample mean with normal curve of  

𝑿~𝑵𝑩(𝟓, 𝟎. 𝟕) for sample of sizes (a) 𝐧 = 𝟏𝟎 (b) 𝐧 = 𝟓𝟎 (c) 𝐧 = 𝟏𝟎𝟎 and 

(d) 𝐧 = 𝟐𝟓𝟎. 

 

8.3.2 Continuous uniform distribution  

Consider 𝑋1, 𝑋2… 𝑋𝑛 is random sample from continuous uniform distribution in the 

interval (0, 10). I have written the following R-Program 6 for studying sampling distribution 

of sample mean and to demonstrate the CLT where 𝑋~𝑈(0, 10). 

 

R-Program 6: R code for demonstration of CLT of 𝑿~𝑼(𝟎 , 𝟏𝟎) 
set.seed(50)   #for producing the same sequence of random variable every time 

n=250;                  #sample size 

rep=1000;              #repetation 

x1=runif(rep*n,0,10);   #random sample from Negative Binomial k=5, p=0.7 

x=matrix(x1,rep,n);               #arrangment of random numbers in matrix 

s.mean10=apply(x[,1:10],1,mean);       #sample mean n=10 

s.mean50=apply(x[,1:50],1,mean);       #sample mean n=50 

s.mean100=apply(x[,1:100],1,mean);       #sample mean n=100 

s.mean250=apply(x[,1:250],1,mean);       #sample mean n=250 

nt10=shapiro.test(s.mean10);      #Normality test of sample mean n=10 

nt50=shapiro.test(s.mean50);      #Normality test of sample mean n=50 

nt100=shapiro.test(s.mean100);      #Normality test of sample mean n=100 

nt250=shapiro.test(s.mean250);      #Normality test of sample mean n=250 
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p.value=c(nt10$p.value,nt50$p.value,nt100$p.value,nt250$p.value)  #P-value of 

the normality test 

#Function from plotting Histogram with Normal curve 

hist_curve<-function(x){ 

  N=length(x);H=hist(x,breaks=50,xlab="",main="");dx=(H$breaks[2]-

H$breaks[1]); 

  x0=H$breaks;x1=c(x0[1]-dx/2,x0+dx/2); 

  lines(x1,N*dnorm(x1,mean(x),sd(x))*dx,col="blue") 

} 

par(mfrow=c(2,2)); 

hist_curve(s.mean10);title(main="n=10",xlab="(a)"); 

hist_curve(s.mean50);title(main="n=50",xlab="(b)"); 

hist_curve(s.mean100);title(main="n=100",xlab="(c)"); 

hist_curve(s.mean250);title(main="n=250",xlab="(d)") 

 

Table 6 shows the P-value of Shapiro test of normality. 

 

Table 6: P-value for Shapiro test of normality 

Sample size(𝑛) 10 50 100 250 

P-value 0.0348 0.2414 0.2984 0.3321 

 

CLT hold for 𝑛 = 50, 100, 250 which can be confirmed from P-value given in Table 6. In 

Figure 6, I used to draw histogram with normal curve. One can see the normal curve fits well 

for (b) n=50, (c) n=100 and (d) n=250. As sample size increases normal curve fits well. 

 

 
Figure 6:  

 

Sampling distribution of sample mean with normal curve of  𝑿~𝑼(𝟎, 𝟏𝟎) 

for sample of sizes (a) 𝐧 = 𝟏𝟎 (b) 𝐧 = 𝟓𝟎 (c) 𝐧 = 𝟏𝟎𝟎 and (d) 𝐧 = 𝟐𝟓𝟎. 
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8.4 Some important notes 

 

 One can extend the study of sampling distributions with other sample statistic and 

distributions.  

 This sampling distributions can be used for determining empirical probabilities.  

 One can verify the other results like CLT. 

 Sampling distributions of complicated statistic can be studied. 

 

8.5 References 

 

 Verzani, J. (2014). Using R for introductory statistics. CRC Press. 
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Chapter 9 
 

Statistical Tests Using R 
 

 
Dr. Rajendra Nana Chavhan, Assistant Professor, Department of Statistics,  

K. C. College, Churchgate, Mumbai – 400 020. 

 

 

9.1 Introduction 

 

In this chapter, I have demonstrated the one sample t-test, two sample t-test, paired t-test, 

chi-square test for variance, F-test for equality of two variances with example in R 

programming.  This article is useful for students, teachers and researchers in applied 

sciences. 

 

9.2 t-test 

 

9.2.1 One sample t-test 

 

One sample t-test is used to investigate whether population mean (𝜇) is regarded as some 

specified value 𝜇𝑜, based on a random sample. That is, to test the significance of the 

difference between the sample mean (�̅�) and the assumed population mean 𝜇𝑜. We assume 

population from which, the sample of size 𝑛 drawn is Normal distribution whose population 

mean is unknown. We test one of the following null hypothesis (𝐻0) and alternative 

hypothesis (𝐻1) at 𝛼 level of significance. 

a) 𝐻0 : There is no significant difference between the sample mean �̅� and the assumed 

population mean 𝜇. i.e., 𝐻0 ∶  𝜇 =  𝜇0 vs 𝐻1 ∶  𝜇 ≠  𝜇0 

b) 𝐻0 ∶  𝜇 ≤  𝜇0 vs 𝐻1 ∶  𝜇 >  𝜇0 

c) 𝐻0 ∶  𝜇 ≥ 𝜇0  vs 𝐻1 ∶  𝜇 <  𝜇0 

 

The test statistic for testing the above hypothesis is 

𝑡 =
�̅� − 𝜇

�̂�/√𝑛
 

 

Where �̅� =
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
 and �̂�2 = 𝑆2 =

∑ (𝑋𝑖−�̅�)2𝑛
𝑖

𝑛−1
 

 

Under 𝐻0, the test statistic follows 𝑡 distribution with (𝑛 − 1) degrees of freedom. We take 

the decision whether to reject the null hypothesis or not based on P-value.  If P-value <  𝛼 

then we rejects the null hypothesis and if P-value ≥  𝛼 then we does not enough evidence to 

reject the null hypothesis. The P-value is calculated as 
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For  a) 𝐻1 ∶  𝜇 ≠  𝜇0 ,  P-value=2 × 𝑃(𝑇 > |𝑡|) 

b) 𝐻1 ∶  𝜇 >  𝜇0 ,  P-value=𝑃(𝑇 > 𝑡) 

c) 𝐻1 ∶  𝜇 <  𝜇0 ,  P-value=𝑃(𝑇 < 𝑡) 

 

where 𝑇 follows 𝑡 distribution with (𝑛 − 1) degrees of freedom. 
 

 

9.2.2 Two sample t-test 

 

Two sample t-test is used to investigate the null hypothesis of the difference between mean 

of the two populations is some constant value, based on two random samples. We assume 

that the populations from which, the two samples drawn, are Normal distributions which 

have unknown and same variance. A random sample of size 𝑚 observations 𝑋1, 𝑋2, … , 𝑋𝑚 be 

drawn from population with unknown mean 𝜇1 and a random sample of size 𝑛 observations 

𝑌1, 𝑌2, … , 𝑌𝑛 be drawn from population with unknown mean 𝜇2. We assume that both the 

populations have equal variances. We test one of the following null hypothesis (𝐻0) and 

alternative hypothesis (𝐻1) at 𝛼 level of significance. 

a) 𝐻0 : The difference between two population mean is some constant value 𝑐.   i.e. 𝐻0:  

𝜇1 −  𝜇2 = 𝑐  vs 𝐻1 ∶  𝜇1 − 𝜇2 ≠ 𝑐 

b) 𝐻0:  𝜇1 −  𝜇2 ≤ 𝑐 vs   𝐻1 ∶  𝜇1 −  𝜇2 > 𝑐 

c) 𝐻0:  𝜇1 −  𝜇2 ≥ 𝑐 vs   𝐻1 ∶  𝜇1 −  𝜇2 < 𝑐 

 

The test statistic for testing the above hypothesis is 

𝑡 =
(�̅� − �̅�) − (𝜇1 − 𝜇2)

𝑆 × √(
1
𝑚

+
1
𝑛)

 

 

where �̅� =
∑ 𝑋𝑖

𝑚
𝑖=1

𝑚
, �̅� =

∑ 𝑌𝑖
𝑛
𝑖=1

𝑛
  and 𝑆2 =

∑ (𝑋𝑖−�̅�)2+∑ (𝑌𝑖−�̅�)2𝑛
𝑖=1

𝑚
𝑖=1

𝑚+𝑛−2
 

 

Under 𝐻0, the test statistic follows 𝑡 distribution with (𝑚 + 𝑛 − 2) degrees of freedom. The 

P-value is calculated as 

For a) 𝐻1 ∶  𝜇1 −  𝜇2 ≠ 𝑐,  

b) 𝐻1 ∶  𝜇1 −  𝜇2 > 𝑐 ,  

c) 𝐻1 ∶  𝜇1 −  𝜇2 < 𝑐,  

P-value=2 × 𝑃(𝑇 > |𝑡|) 

P-value=𝑃(𝑇 > 𝑡) 

P-value=𝑃(𝑇 < 𝑡) 

where 𝑇 follows 𝑡 distribution with (𝑚 + 𝑛 − 2) degrees of freedom. 

 

If the assumption of equality of variance of two samples does not hold then the test statistics 

for testing the null hypothesis is 

𝑡 =
(�̅� − �̅�) − (𝜇1 − 𝜇2)

√(
𝑆1

𝑚
+

𝑆2

𝑛 )
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where �̅� =
∑ 𝑋𝑖

𝑚
𝑖=1

𝑚
, �̅� =

∑ 𝑌𝑖
𝑛
𝑖=1

𝑛
 , 𝑆1

2 =
∑ (𝑋𝑖−�̅�)2𝑚

𝑖=1

𝑚−1
 and 𝑆2

2 =
∑ (𝑌𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
 

 

Under 𝐻0 ∶  𝜇1 − 𝜇2 = 𝑐, the test statistic follows 𝑡 distribution with 𝑣 degrees of freedom 

where 𝑣 =
(

𝑆1
2

𝑚
+

𝑆2
2

𝑛
)

𝑆1
4

𝑚2(𝑚−1)
+

𝑆2
4

𝑛2(𝑛−1)

. This t-test commonly known as Welch Two Sample t-test.  

Method of calculation of P-value is same as per two sample t-test.   

 
 

9.2.3 Paired t-test 

 

Paired t-test is used to investigate the significance of the difference between before and after 

the treatment in the sample. Let 𝑋1, 𝑋2, … 𝑋𝑛 be the observations made initially from 𝑛 

individuals as a random sample of size 𝑛. A treatment is applied to the above individuals and 

observations are made after the treatment and are denoted by 𝑌1, 𝑌2, … , 𝑌𝑛. That is, (𝑋𝑖, 𝑌𝑖) 

denotes the pair of observations obtained from the 𝑖th individual, before and after the 

treatment applied. Let 𝜇𝑋 is unknown population mean before the treatment and 𝜇𝑌 is the 

unknown population mean after the treatment. We assume that the populations from which, 

the two samples drawn, are Normal distribution and observations are collected in a pair. We 

test one of the following null hypothesis (𝐻0) and alternative hypothesis (𝐻1) at 𝛼 level of 

significance. 

a) 𝐻0 : There is no significant difference between before and after the treatment applied. 

i.e. treatment applied, is ineffective. i.e., 𝐻0 ∶  𝜇𝑑  =  𝜇𝑋 − 𝜇𝑌 = 𝑐 vs 𝐻1 ∶  𝜇𝑑  ≠  𝑐 

b) 𝐻0 ∶  𝜇𝑑 ≤ 0 vs 𝐻1 ∶  𝜇𝑑 >  𝑐 

c) 𝐻0 ∶  𝜇𝑑 ≥ 0 vs 𝐻1 ∶  𝜇𝑑 <  𝑐 

 

The test statistic for testing the above hypothesis is 

𝑡 =
�̅� − 𝜇𝑑

𝑆𝑑/√𝑛
 

 

where �̅� =
∑ 𝑑𝑖

𝑛
𝑖=1

𝑛
 , 𝑑𝑖 = 𝑋𝑖 − 𝑌𝑖  and 𝑆𝑑

2 =
∑ (𝑑𝑖−�̅�)2𝑛

𝑖

𝑛−1
 

 

Under 𝐻0, the test statistic follows 𝑡 distribution with (𝑛 − 1) degrees of freedom. The P-

value is calculated as 

For a) 𝐻1 ∶  𝜇𝑑  ≠ 𝑐 ,   

b) 𝐻1 ∶  𝜇𝑑 >  𝑐,  

c) 𝐻1 ∶  𝜇𝑑 <  𝑐 

P-value=2 × 𝑃(𝑇 > |𝑡|) 

P-value=𝑃(𝑇 > 𝑡) 

P-value=𝑃(𝑇 < 𝑡) 

 

where 𝑇 follows 𝑡 distribution with (𝑛 − 1) degrees of freedom. 

In R programming, the t.test( ) function produces the variety of t-tests. We will discuss the 

different t-tests by following Example 1, 2 and 3. 
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Example 1 (One Sample t-test): A sample of 13 students from a government school has the 

following scores in a test.  

89  88 78  76  78  78  86  83  82 76  72  77  92. 

Do this data support that i) the mean mark of the school students is 80? Test at 5% level. 

ii) the mean mark of the school students is more than 75? Test at 1% level. 

iii) the mean mark of the school students is less than 85? Test at 10% level. 

 

Solution: 

i)  Here we test,  𝐻0 ∶  𝜇 =  80 against  𝐻1 ∶  𝜇 ≠  80. 
x=c(89,88,78,76,78,78,86,83,82,76,72,77,92)   #data 

t.test(x,mu=80) #by default alternative is two sided and level is 5% 

 

Output 
One Sample t-test 

data:  x 

t = 0.68885, df = 12, p-value = 0.504 

alternative hypothesis: true mean is not equal to 80 

95 percent confidence interval: 

77.50427  84.80342 

sample estimates: 

mean of x  

81.15385  

 

R Output gives the test statistic 𝑡, degrees of freedom and P-value.  

Here P-value is 0.504>0.05, hence we do not have enough evidence to reject 𝐻0 (i.e. 

Accept 𝐻0). Output also gives additional information about the confidence interval with 

sample estimate of 𝜇. Here 95% confidence interval is (77.50427, 84.80342) which also 

support the decision taken from P-value as 80 is included in the confidence interval. 

ii) Here we test,  𝐻0 ∶  𝜇 ≤  75 against  𝐻1 ∶  𝜇 > 75. 
x=c(89,88,78,76,78,78,86,83,82,76,72,77,92) #data 

t.test(x,mu=75,alternative = "greater",cof.level=0.99) 

 

Output 
 One Sample t-test 

 

data:  x 

t = 3.6739, df = 12, p-value = 0.001592 

alternative hypothesis: true mean is greater than 75 

95 percent confidence interval: 

 78.16846      Inf 

sample estimates: 

mean of x  

 81.15385  

 

Here P-value is 0.001592<0.01, hence we reject 𝐻0 (i.e. Accept 𝐻1). Output also gives one 

sided confidence interval with sample estimate of 𝜇 which support the decision taken from 

P-value. 

iii) Here we test,  𝐻0 ∶  𝜇 ≥  85 against  𝐻1 ∶  𝜇 <  85. 
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x=c(89,88,78,76,78,78,86,83,82,76,72,77,92) 

t.test(x,mu=85,alternative = "less",cof.level=0.9) 

 

Output: 
 One Sample t-test 

 

data:  x 

t = -2.2962, df = 12, p-value = 0.02024 

alternative hypothesis: true mean is less than 85 

95 percent confidence interval: 

     -Inf 84.13923 

sample estimates: 

mean of x  

 81.15385 

 

Here P-value is 0.02024<0.1, hence we reject 𝐻0 (i.e. Accept 𝐻1). Output also gives one sided 

confidence interval with sample estimate of 𝜇 which support the decision taken from P-

value. 
 

 
Example 2 (Two Sample t-test): The yield of two varieties of mango (in tons) on two 
independent sample of 10 and 12 plants are given below. 

Variety-A: 22 24 26 23 26 30 32 34   
Variety-B: 28 25 26 30 32 30 33 28 30 35 

i) Test whether the yield of Variety-A is not equal to Variety-B at 2% level of significance. 

ii) Test whether the difference between yield of Variety-A is less than Variety-B by 2 tones 

at 5% level of significance. 

iii) Test whether the difference between yield of Variety-A is more than Variety-B by 0.5 

tones at 10% level of significance. 

iv) Test whether the yield of Variety-A is not equal to Variety-B at 5% level of significance 

assume unequal variances of both samples. 

 

Solution: 

i) Here we test, 𝐻0: 𝜇1 − 𝜇2 = 0 against 𝐻1: 𝜇1 − 𝜇2 ≠ 0  
x=c(22,24,26,23,26,30,32,34)   #first sample data 

y=c(28,25,26,30,32,30,33,28,30,35)  #second sample data 

t.test(x,y,var.equal = TRUE, conf.level = 0.98)  

#by default c=0 and alternative 

#hypothesis is two sided 

 

Output: 
Two Sample t-test 

data:  x and y 

t = -1.4607, df = 16, p-value = 0.1634 

alternative hypothesis: true difference in means is not equal to 0 

98 percent confidence interval: 

 -7.129169  1.979169 

sample estimates: 

mean of x mean of y  

   27.125    29.700  
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Here P-value is 0.1634>0.02, hence we do not have enough evidence to reject 𝐻0 (i.e. Accept 

𝐻0). Output also give confidence interval of difference of means with sample estimates of 𝜇1 

and 𝜇2 which support the decision taken from P-value. 

ii) Here we test, 𝐻0: 𝜇1 − 𝜇2 ≥ 2 against 𝐻1: 𝜇1 − 𝜇2 < 2 
x=c(22,24,26,23,26,30,32,34)   #first sample data 

y=c(28,25,26,30,32,30,33,28,30,35)  #second sample data 

t.test(x,y,var.equal = TRUE, mu=2,alternative = "less", conf.level = 0.95) 

 

Output: 
 Two Sample t-test 

 

data:  x and y 

t = -2.5953, df = 16, p-value = 0.009763 

alternative hypothesis: true difference in means is less than 2 

95 percent confidence interval: 

      -Inf 0.5026423 

sample estimates: 

mean of x mean of y  

   27.125    29.700  

 

Here P-value is 0.009763<0.05, hence we reject 𝐻0 (i.e. Accept 𝐻1). Output also gives one 

sided confidence interval of difference of means with sample estimates of 𝜇1 and 𝜇2  which 

support the decision taken from P-value. 

iii) Here we test, 𝐻0: 𝜇1 − 𝜇2 ≤ 0.5 against 𝐻1: 𝜇1 − 𝜇2 > 0.5 
x=c(22,24,26,23,26,30,32,34)   #first sample data 

y=c(28,25,26,30,32,30,33,28,30,35)  #second sample data 

t.test(x,y,var.equal = TRUE, mu=0.5,alternative = "greater", conf.level = 0.9) 

 

Output: 
Two Sample t-test 

data:  x and y 

t = -1.7444, df = 16, p-value = 0.9499 

alternative hypothesis: true difference in means is greater than 0.5 

90 percent confidence interval: 

 -4.931434       Inf 

sample estimates: 

mean of x mean of y  

   27.125    29.700  

 

Here P-value is 0.9499>0.1, hence we do not have enough evidence to reject 𝐻0 (i.e. Accept 

𝐻0). Output also give confidence interval of difference of means with sample estimates of 𝜇1 

and 𝜇2 which support the decision taken from P-value. 

iv) Here we test, 𝐻0: 𝜇1 − 𝜇2 = 0 against 𝐻1: 𝜇1 − 𝜇2 ≠ 0 where assumption of equality of 

variance of two sample does not hold. 
x=c(22,24,26,23,26,30,32,34)   #first sample data 

y=c(28,25,26,30,32,30,33,28,30,35)  #second sample data 

t.test(x,y) #by default c=0, alternative hypothesis is two sided and los=5% 

  #by default variances are not equal 
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Output: 
           Welch Two Sample t-test 

 

data:  x and y 

t = -1.4037, df = 12.172, p-value = 0.1854 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -6.565645  1.415645 

sample estimates: 

mean of x mean of y  

   27.125    29.700 

 

Here P-value is 0.1854>0.05, hence we do not have evidence to reject 𝐻0 (i.e. Accept 𝐻0). 

Output also give confidence interval of difference of means with sample estimates of 𝜇1 and 

𝜇2 which support the decision taken from P-value. 
 

 

Example 3 (Paired t-test): A new variety of health drink in the market for weight of infants. 

A sample of 10 babies was selected and was given the above diet for a month and the weights 

were observed before (X) and after (Y) the diet given.  

X : 6.6 6.85 6.75 7.2 6.75 6.65 6.7 7.3 6.9 6.6 

Y : 6.9 7.3 7 7.6 6.85 7.3 6.7 7.45 7.3 6.5 

i) Examine whether there is significant difference between before and after the healthy 

drink diet at 5% level of significance. 

ii) Examine whether the weight gain after the healthy drink diet is more than 0.2 kg at 1% 

level of significance. 

iii) Examine whether the weight loss after the healthy drink diet is less than 0.5 kg at 10% 

level of significance. 

 

Solution: 

i) Here we test, 𝐻0: 𝜇𝑑 = 𝜇𝑋 − 𝜇𝑌 = 0 against 𝐻1: 𝜇𝑑 ≠ 0 
x=c(6.6,6.85,6.75,7.2,6.75,6.65,6.7,7.3,6.9,6.6) #Before Treatment Data 

y=c(6.9,7.3,7,7.6,6.85,7.3,6.7,7.45,7.3,6.5) #After Treatment Data 

t.test(x,y,paired = TRUE) #by default c=0, alternative is two sided and los=5%    

 

Output: 
Paired t-test 

data:  x and y 

t = -3.6211, df = 9, p-value = 0.005563 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -0.42242786 -0.09757214 

sample estimates: 

mean of the differences  

                  -0.26  

 

Here P-value is 0.005563<0.05, hence we reject 𝐻0 (i.e. Accept 𝐻1). Output also gives 

confidence interval and sample estimate of 𝜇𝑑  which also support the decision taken from P-

value. 
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ii) Here we test, 𝐻0: 𝜇𝑑 = 𝜇𝑋 − 𝜇𝑌 ≤ 0.2 against 𝐻1: 𝜇𝑑 > 0.2 
x=c(6.6,6.85,6.75,7.2,6.75,6.65,6.7,7.3,6.9,6.6) #Before Treatment Data 

y=c(6.9,7.3,7,7.6,6.85,7.3,6.7,7.45,7.3,6.5) #After Treatment Data 

t.test(x,y,paired = TRUE,mu=0.2,conf.level = 0.99,alternative = "greater") 

 

Output: 
 Paired t-test 

 

data:  x and y 

t = -6.4065, df = 9, p-value = 0.9999 

alternative hypothesis: true difference in means is greater than 0.2 

99 percent confidence interval: 

 -0.4625854        Inf 

sample estimates: 

mean of the differences  

                  -0.26  

Here P-value is 0.9999>0.01, hence we do not have evidence to reject 𝐻0 (i.e. Accept 𝐻0). 

Output also gives confidence interval and sample estimate of 𝜇𝑑  which also support the 

decision taken from P-value. 

 

iii) Here we test, 𝐻0: 𝜇𝑑 = 𝜇𝑋 − 𝜇𝑌 ≥ 0.5 against 𝐻1: 𝜇𝑑 < 0.5 
x=c(6.6,6.85,6.75,7.2,6.75,6.65,6.7,7.3,6.9,6.6) #Before Treatment Data 

y=c(6.9,7.3,7,7.6,6.85,7.3,6.7,7.45,7.3,6.5) #After Treatment Data 

t.test(x,y,paired = TRUE,mu=0.5,conf.level = 0.9,alternative = "less") 

 

Output: 
Paired t-test 

 

data:  x and y 

t = -10.585, df = 9, p-value = 1.113e-06 

alternative hypothesis: true difference in means is less than 0.5 

90 percent confidence interval: 

       -Inf -0.1606955 

sample estimates: 

mean of the differences  

                  -0.26  

Here P-value is <0.1, hence we reject 𝐻0 (i.e. Accept 𝐻1). Output also gives confidence interval 

and sample estimate of 𝜇𝑑  which also support the decision taken from P-value. 
 

 

9.3 Chi-square Test for Variance: 

 

Chi-square test for variance is used to test the population variance 𝜎2 regarded as 𝜎0
2 based 

on a random sample of size 𝑛 which is drawn from normal population with mean 𝜇 and 

variance 𝜎0
2(both 𝜇 and 𝜎2 are unknown) . We investigate the significance of the difference 

between the assumed population variance 𝜎0
2 and the sample variance. We test one of the 

following null hypothesis (𝐻0) and alternative hypothesis (𝐻1) at 𝛼 level of significance. 

a) 𝐻0 : There is no significant difference between the sample variance 𝑆2 and the 

assumed population variance 𝜎0
2. i.e., 𝐻0 ∶  𝜎2  =  𝜎0

2 vs 𝐻1 ∶  𝜎2  ≠  𝜎0
2 
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b) 𝐻0 ∶  𝜎2 ≤  𝜎0
2 vs  𝐻1 ∶  𝜎2 >  𝜎0

2  

c) 𝐻0 ∶  𝜎2 ≥  𝜎0
2 vs 𝐻1 ∶ 𝜎2 <  𝜎0

2 

The test statistic for testing the above hypothesis is 

𝜒2 =
(𝑛 − 1)𝑆2

𝜎0
2  

Where �̅� =
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
  and 𝑆2 =

∑ (𝑋𝑖−�̅�)2𝑛
𝑖=1

𝑛−1
 

Under 𝐻0, the test statistic follows 𝜒2 distribution with (𝑛 − 1) degrees of freedom. We take 

the decision whether to reject the null hypothesis or not based on P-value.  If P-value <  𝛼 

then we reject the null hypothesis and if P-value ≥  𝛼 then we do not enough evidence to 

reject the null hypothesis. The P-value is calculated as 

For  a) 𝐻1 ∶  𝜎2  ≠  𝜎0
2,  P-value= 2 × (1 − 𝑃(𝜒𝑛−1

2 < 𝜒2)) 

b) 𝐻1 ∶  𝜎2 >  𝜎0
2,  P-value=𝑃(𝜒𝑛−1

2  > 𝜒2) 

c) 𝐻1 ∶  𝜎2 <  𝜎0
2,  P-value=𝑃(𝜒𝑛−1

2 < 𝜒2) 

Where 𝜒2 follows 𝜒2 distribution with (𝑛 − 1) degrees of freedom (i.e. . 𝜒𝑛−1
2 ).  

If 𝜇 is known then test statistic is 𝜒2 =
∑ (𝑋𝑖−𝜇)2𝑛

𝑖=1

𝜎0
2  and is follows 𝜒2 distribution with 𝑛 

degrees of freedom (i.e. . 𝜒𝑛
2). 

In R programming, there is no inbuilt function for chi-square test for variance testing. Here 

we write the code in R, as per discussed procedure. We discuss the code with the following 

example 4 and 5. 
 

Example 4: A lifetime of a certain brand of bulb (in hours) produced by his company is as 

follows 

3360 3720 3300 3420 3240 3420 3450 3540 3750 3780 

i) Test whether the variance is 30000 or not at 5% level. 

ii) Test whether the variance is more than 20000 at 10% level. 

iii) Test whether the variance is less than 33000 at 2% level. 

 

Solution: 

i) Here we test,  𝐻0 ∶  𝜎2  =  𝜎0
2 = 30000 against  𝐻0 ∶  𝜎2  ≠  𝜎0

2 = 30000  
x=c(3360,3720,3300,3420,3240,3420,3450,3540,3750,3780)  #data 

s.2=33000;                                       #assumed population variance 

n=length(x)                                             #size of data 

chisqare.stat=(n-1)*var(x)/s.2;                         #test statistic 

#Calculation of p-value here alternative is two sided 

if (qchisq(alp/2,n-1)<chisqare.stat) 

{p.value=pchisq(chisqare.stat,n-1)}else  

{p.value=pchisq(chisqare.stat,n-1)} 

# Output 

cat("\t \t Chi-square Test for Variance\n", 

    "alternative hypothesis: true variance is not equal to" , s.2,"\n", 

    "test statistic=",chisqare.stat, "\t", "df=",n-1,"\t","p-value=",p.value); 
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Output: 
     Chi-square Test for Variance 

 alternative hypothesis: true variance is not equal to 33000  

 test statistic= 10.10182   df= 9   p-value= 0.6846111 

 

Here P-value is 0.6846111>0.05, hence we do not have enough evidence to reject 𝐻0 (i.e. 

Accept 𝐻0). 

ii) Here we test,  𝐻0 ∶  𝜎2 ≤  𝜎0
2 = 20000 against  𝐻0 ∶  𝜎2 >  𝜎0

2 = 20000  
x=c(3360,3720,3300,3420,3240,3420,3450,3540,3750,3780)  #data 

s.2=20000;                                       #assumed population variance 

n=length(x)                                             #size of data 

chisqare.stat=(n-1)*var(x)/s.2;                         #test statistic 

#Calculation of p-value here alternative is greater than type 

p.value=1-pchisq(chisqare.stat,n-1); 

# Output 

cat("\t \t Chi-square Test for Variance\n", 

    "alternative hypothesis: true variance greater than" , s.2,"\n", 

    "test statistic=",chisqare.stat, "\t", "df=",n-1,"\t","p-value=",p.value); 

 

Output: 
      Chi-square Test for Variance 

 alternative hypothesis: true variance greater than 20000  

 test statistic= 16.668   df= 9   p-value= 0.05417611 

 

Here P-value is 0.05417611<0.1, hence we reject 𝐻0 (i.e. Accept 𝐻1). 

iii) Here we test,  𝐻0 ∶  𝜎2 ≥  𝜎0
2 = 35000 against  𝐻0 ∶  𝜎2 <  𝜎0

2 = 35000  
x=c(3360,3720,3300,3420,3240,3420,3450,3540,3750,3780)  #data 

s.2=40000;                                           #assumed population 

variance 

n=length(x)                                             #size of data 

chisqare.stat=(n-1)*var(x)/s.2;                         #test statistic 

#Calculation of p-value here alterrnative is less than type 

p.value=pchisq(chisqare.stat,n-1); 

# Output 

cat("\t \t Chi-square Test for Variance\n", 

    "alternative hypothesis: true variance less than" , s.2,"\n", 

    "test statistic=",chisqare.stat, "\t", "df=",n-1,"\t","p-value=",p.value); 

 

Output: 
    Chi-square Test for Variance 

 alternative hypothesis: true variance less than 40000  

 test statistic= 8.334   df= 9   p-value= 0.4991312 

Here P-value is 0.4991312>0.02, hence we do not have enough evidence to reject 𝐻0 (i.e. 

Accept 𝐻0). 
 

 

Example 5: A average yield of mango is 650 per mango tree and random sample of 10 mango 

trees has the following yield in a year:  

760 650 640 560 580 540 620 680 760 780 

i) Test whether variance is 6500 or not at 1% level of significance. 
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ii) Test whether variance is more than 7500 at 5% level of significance. 

iii) Test whether variance is less than 4500 at 10% level of significance. 

 

Solution: 

i) Here 𝜇 is known and we test,  𝐻0 ∶  𝜎2  =  𝜎0
2 = 6500 against  𝐻0 ∶  𝜎2  ≠  𝜎0

2 = 6500  
x=c(760,650,640,560,580,540,620,680,760,780)  #data 

mu=650;          #population mean 

s.2=6500;                                     #assumed population variance 

n=length(x)                                   #size of data 

chisqare.stat=sum((x-mu)^2)/s.2;              #test statistic 

#Calculation of p-value here alternative is two sided 

p.value=2*(1-pchisq(chisqare.stat,n)) 

# Output 

cat("\t \t Chi-square Test for Variance\n", 

    "alternative hypothesis: true variance is not equal to" , s.2,"\n", 

    "test statistic=",chisqare.stat, "\t", "df=",n,"\t","p-value=",p.value); 

 

Output: 
       Chi-square Test for Variance 

 alternative hypothesis: true variance is not equal to 6500  

 test statistic= 10.47692   df= 10   p-value= 0.7993858 

Here P-value is 0.7993858>0.01, hence we do not have evidence to reject 𝐻0 (i.e. Accept 𝐻0). 

ii) Here 𝜇 is known and we test,  𝐻0 ∶  𝜎2 ≤  𝜎0
2 = 7500 against  𝐻0 ∶  𝜎2 = 𝜎0

2 > 7500  
x=c(760,650,640,560,580,540,620,680,760,780)  #data 

mu=650;                                       #population mean 

s.2=7500;                                     #assumed population variance 

n=length(x)                                   #size of data 

chisqare.stat=sum((x-mu)^2)/s.2;              #test statistic 

#Calculation of p-value here alternative is greater than type 

p.value=1-pchisq(chisqare.stat,n); 

# Output 

cat("\t \t Chi-square Test for Variance\n", 

    "alternative hypothesis: true variance is greater than" , s.2,"\n", 

    "test statistic=",chisqare.stat, "\t", "df=",n,"\t","p-value=",p.value); 

 

Output: 
    Chi-square Test for Variance 

 alternative hypothesis: true variance is greater than 7500  

 test statistic= 9.08   df= 10   p-value= 0.5245285 

Here P-value is 0.5245285>0.05, hence we do not have evidence to reject 𝐻0 (i.e. Accept 𝐻0). 

iii) Here 𝜇 is known and we test,  𝐻0 ∶  𝜎2 ≥  𝜎0
2 = 4500 against  𝐻0 ∶  𝜎2 = 𝜎0

2 < 4500  
x=c(760,650,640,560,580,540,620,680,760,780)  #data 

mu=650;                                       #population mean 

s.2=4500;                                     #assumed population variance 

n=length(x)                                   #size of data 

chisqare.stat=sum((x-mu)^2)/s.2;              #test statistic 

#Calculation of p-value here alternative is less than type 

p.value=pchisq(chisqare.stat,n); 

# Output  

cat("\t \t Chi-square Test for Variance\n", 
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    "alternative hypothesis: true variance is less than" , s.2,"\n", 

    "test statistic=",chisqare.stat, "\t", "df=",n,"\t","p-value=",p.value); 

 

Output: 
        Chi-square Test for Variance 

alternative hypothesis: true variance is less than 4500  

test statistic= 15.13333   df= 10   p-value= 0.8727241 

Here P-value is 0.8727241>0.1, hence we do not have evidence to reject 𝐻0 (i.e. Accept 𝐻0). 

 

9.4 F-test for equality of two variances:  

 

F-test is used to test the variances of the two populations are equal, based on two random 

samples. We assume that the populations from which, the two samples drawn, are Normal 

distributions. A random sample of size 𝑚 observations 𝑋1, 𝑋2, … , 𝑋𝑚 be drawn from 

population with unknown variance 𝜎1
2 and a random sample of size 𝑛 observations 

𝑌1, 𝑌2, … , 𝑌𝑛 be drawn from population with unknown variance 𝜎2
2. We test one of the 

following null hypothesis (𝐻0) and alternative hypothesis (𝐻1) at 𝛼 level of significance. 

a) 𝐻0 : There is no difference between two population variance i.e. 𝐻0:  𝜎1
2 =  𝜎2

2 vs 

 𝐻1 ∶  𝜎1
2 ≠  𝜎2

2 

b) 𝐻0:  𝜎1
2 ≤  𝜎2

2 vs  𝐻1 ∶  𝜎1
2 >  𝜎2

2        

c) 𝐻0:  𝜎1
2 ≥  𝜎2

2 vs  𝐻1 ∶ 𝜎1
2 <  𝜎2

2 

The test statistic for testing the above hypothesis is   𝐹 =
𝑆1

2

𝑆2
2 

Where  𝑆1
2 =

∑ (𝑋𝑖−�̅�)2𝑚
𝑖=1

𝑚−1
 , 𝑆2

2 =
∑ (𝑌𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
 �̅� =

∑ 𝑋𝑖
𝑚
𝑖=1

𝑚
, and  �̅� =

∑ 𝑌𝑖
𝑛
𝑖=1

𝑛
 , 

 

Under 𝐻0 ∶  𝜎1
2  =  𝜎2

2, the test statistic 𝐹 follows 𝐹 distribution with (𝑚 − 1, 𝑛 − 1) degrees 

of freedom. We take the decision whether to reject the null hypothesis or not based on P-

value.  If P-value <  𝛼 then we reject the null hypothesis and if P-value ≥  𝛼 then we do not 

enough evidence to reject the null hypothesis. The P-value is calculated as 

 

For a) 𝐻1 ∶  𝜎1
2  ≠  𝜎2

2, 

b) 𝐻1 ∶  𝜎1
2 >  𝜎2

2,   

c) 𝐻1 ∶  𝜎1
2 <  𝜎2

2, 

P-value= 2 × (1 − 𝑃(𝐹(𝑚−1,𝑛−1) < 𝐹)) 

P-value=𝑃(𝐹(𝑚−1,𝑛−1)  > 𝐹) 

P-value=𝑃(𝐹(𝑚−1,𝑛−1) < 𝐹) 

Where 𝐹 follows 𝐹 distribution with (𝑚 − 1, 𝑛 − 1) degrees of freedom.  

In R programming, there is inbuilt function var.test() for F test for testing equality of two 

variances. We will demonstrate the var.test() function by Example 6. 

 
 

Example 6: The yield of two varieties of mango (in tons) on two independent sample of 10 

and 12 plants are given below. 

Variety-A: 22 24 26 23 26 30 32 34   
Variety-B: 28 25 26 30 32 30 33 28 30 35 

i) Test whether the variance of variety-A is not equal to Variety-B at 5% level of 

significance. 
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ii) Test whether the variance of variety-A is greater than Variety-B at 10% level of 

significance. 

iii) Test whether the variance of variety-A is less than Variety-B at 1% level of significance. 

 

Solution: 

i) Here we test 𝐻0 ∶  𝜎1
2 =  𝜎2

2 against 𝐻1: 𝜎1
2  ≠  𝜎2

2 

x=c(22,24,26,23,26,30,32,34)       #first sample data 

y=c(28,25,26,30,32,30,33,28,30,35)  #second sample data 

var.test(x,y)  #by default alternative is two sided and los=5% 

 

Output: 
 F test to compare two variances 

 

data:  x and y 

F = 2.0141, num df = 7, denom df = 9, p-value = 0.3238 

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval: 

 0.4798759 9.7142569 

sample estimates: 

ratio of variances  

          2.014062  

 

Here P-value is 0.3238>0.05, Hence we do not have enough evidence to reject 𝐻0.(i.e. Accept 

𝐻0). Output also gives 95% confidence interval for ratio of variance with their sample 

estimates which also support the decision taken from P-value. 

ii) Here we test 𝐻0 ∶  𝜎1
2 ≤  𝜎2

2 against 𝐻1: 𝜎1
2 >  𝜎2

2 
x=c(22,24,26,23,26,30,32,34)       #first sample data 

y=c(28,25,26,30,32,30,33,28,30,35)  #second sample data 

var.test(x,y,alternative = "greater",conf.level = 0.9) 

 

Output: 
 F test to compare two variances 

 

data:  x and y 

F = 2.0141, num df = 7, denom df = 9, p-value = 0.1619 

alternative hypothesis: true ratio of variances is greater than 1 

90 percent confidence interval: 

 0.8039161       Inf 

sample estimates: 

ratio of variances  

          2.014062  

Here P-value is 0.1639>0.10, Hence we do not have enough evidence to reject 𝐻0.(i.e. Accept 

𝐻0). 

 

iii) Here we test 𝐻0 ∶  𝜎1
2 ≥  𝜎2

2 against 𝐻1: 𝜎1
2 <  𝜎2

2 
x=c(22,24,26,23,26,30,32,34)       #first sample data 

y=c(28,25,26,30,32,30,33,28,30,35)   #second sample data 

var.test(x,y,alternative = "less",conf.level = 0.99) 
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Output: 
 F test to compare two variances 

 

data:  x and y 

F = 2.0141, num df = 7, denom df = 9, p-value = 0.8381 

alternative hypothesis: true ratio of variances is less than 1 

99 percent confidence interval: 

  0.00000 13.53198 

sample estimates: 

ratio of variances  

          2.014062 

Here P-value is 0.8381>0.01, Hence we do not have enough evidence to reject 𝐻0.(i.e. Accept 

𝐻0). 

 

9.5 References:  

 
 Verzani, J. (2014). Using R for introductory statistics. CRC Press. 

 Rajagopalan V. (2006). Selected Statistical Tests. New Age International (P) limited, 

Publishers 
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Chapter 10 
 

Simple Random Sampling 
 

 
Mrs. Shailaja J. Rane, Assistant Professor, Department of Statistics,  

K. C. College, Churchgate, Mumbai – 400 020. 

 

 

10.1 Introduction 

 

Sampling is the process of selecting units (e.g., people, organizations) from a population of 

interest so that by studying the sample we may fairly generalize our results back to the 

population from which they were chosen. 

 

Sampling methods are classified as either probability or nonprobability. In probability 

samples, each member of the population has a known non-zero probability of being selected. 

Probability methods include random sampling, systematic sampling, and stratified sampling. 

In nonprobability sampling, members are selected from the population in some nonrandom 

manner. These include convenience sampling, judgment sampling, quota sampling, and 

snowball sampling. The advantage of probability sampling is that sampling error can be 

calculated. Sampling error is the degree to which a sample might differ from the population. 

When inferring to the population, results are reported plus or minus the sampling error. In 

nonprobability sampling, the degree to which the sample differs from the population 

remains unknown. 

 

10.2 Simple Random sampling  

 

Random sampling is the purest form of probability sampling. Each member of the 

population has an equal and known chance of being selected. When there are very large 

populations, it is often difficult or impossible to identify every member of the population, so 

the pool of available subjects becomes biased. This process and technique is known 

as simple random sampling. 

 

In small populations and often in large ones, such sampling is typically done "without 

replacement", i.e., one deliberately avoids choosing any member of the population more 

than once. Although simple random sampling can be conducted with replacement instead, 

this is less common and would normally be described more fully as simple random 

sampling with replacement. Sampling done without replacement is no longer independent, 

but still satisfies exchangeability, hence many results still hold. Further, for a small sample 
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from a large population, sampling without replacement is approximately the same as 

sampling with replacement, since the odds of choosing the same individual twice is low. 

Result 1: In simple random sampling with replacement and without replacement (SRSWOR), 

the sample mean is an unbiased estimate of population mean. (i.e., E (�̅�) =�̅�, �̅� is the sample 

mean and �̅� is the Population mean.) 

 

Result 2: In simple random sampling without replacement (SRSWOR), the variance of sample 

mean is given as V (�̅�) = 
𝑁−𝑛

𝑁𝑛
 S2 (Where S2 is Population mean square given as  

S2 = ∑ (𝑌𝑛
1 I - �̅�)/N 

 

Result 3:In simple random sampling with replacement (SRSWOR), the variance of sample 

mean is given as V (�̅�) = σ2/n 

 

10.3 Examples 

 

R programming helps us in selecting different samples with replacement and without 

replacement using inbuilt functions. Also it helps us check the above results as 

follows: 

 

1. A population contains 4 units with values 8,3,1,11. List out all possible values of sample 

size 2 using SRS (i) With replacement (ii) Without replacement. 

2. A population contains 10 units with values 8, 3, 1, 11, 22, 15, 37, 50, 99, 82. List out all 

possible values of sample size 3 using SRS (i) With Replacement (ii) Without 

replacement. 

3. A population contains 10 units with values 8, 3, 1, 11, 12, 15 ,22 ,40 ,52 ,70. List out all 

possible values of sample size 2 using SRS (i) With Replacement (ii) Without 

replacement. 

 
#Q1 ## WITHOUT REPLACEMENT ## 

 

s=c(0,0) #Initialization 

for (i in 1:3) 

{ 

for (j in 2:4) 

{ 

if (i<j) 

{ 

s=rbind(s,c(i,j)) #The Coop generates all possible samples starting with (0,0) 

} 

} 

} 

s=s[-1,] #Removes combination (0,0) 

Y=c(8,3,1,11) 

y=c(1,1) 

for(i in 1:6) 

{ 
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y=rbind(y,Y[s[i,]]) 

} 

y=y[-1,] 

ybar=rowMeans(y) #Calculate means of y 

Ybar=mean(Y) #Calculate means of Y 

Eybar=mean(ybar) #Calculate means of ybar 

Vybar=5/6*var(ybar) 

cat("Ybar=",Ybar, "VY=",2/8*var(Y),"Eybar=",Eybar,"Vybar=",Vybar) 

 

OUTPUT: 

Ybar= 5.75 VY= 5.229167 Eybar= 5.75 Vybar= 5.229167> 

 

From the above output we can see that E(�̅�) = �̅� 

and  V(�̅�) =
𝑵−𝒏

𝑵𝒏
 S2 

where E(�̅�) is Eybar  

 �̅�  is Ybar 

S2 is Var(Y) and V(�̅�) is Vybar 

Vybar is calculated using the formula 
∑(𝒚−�̅�)𝟐

𝒏−𝟏
 instead of the formula 

∑(𝒚−�̅�)𝟐

𝒏
 .  Hence Vybar is 

multiplied by n-1 and divided by n. 

 
#Q2 ## WITH REPLACEMENT ## 

 

s=c(0,0) 

for(i in 1:4) 

{ 

for(j in 1:4) 

{ 

#if(i<=j) 

{ 

s=rbind(s,j) 

} 

} 

} 

s=s[-1,] 

Y=c(8,3,1,11) 

y=c(1,1) 

for(i in 1:16) 

{ 

y=rbind(y,Y[s[i,]]) 

} 

y=y[-1,] 

ybar=rowMeans(y) 

Ybar=mean(Y) 

Eybar=mean(ybar) 

Vybar=var(ybar) 

cat("Ybar=",Ybar, "VY=",3/4*var(Y)/2,"Eybar=",Eybar,"Vybar=",15/16*Vybar/2) 

 

Output:  Ybar= 5.75 VY= 7.84375 Eybar= 5.75 Vybar= 7.84375> 

 
From the above output we can see that E(�̅�) = �̅� 
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and  V(�̅�) =
𝑵−𝒏

𝑵𝒏
 S2 

where E(�̅�) is Eybar  

 �̅�  is Ybar 

S2 is Var(Y) and V(�̅�) is Vybar 

Vybar is calculated using the formula 
∑(𝒚−�̅�)𝟐

𝒏−𝟏
 instead of the formula 

∑(𝒚−�̅�)𝟐

𝒏
 .  Hence  Vybar 

is multiplied by n-1 and divided by n. 

 
#Q3 ## WITHOUT REPLACEMENT WITH n=2,N=10 ## 

 

s=c(0,0) 

for(i in 1:10) 

{ 

for(j in 1:10) 

{ 

 

if(i<j) 

{ 

s=rbind(s,c(i,j)) 

} 

} 

} 

s=s[-1,] 

Y=c(8,3,1,11,22,15,37,50,99,82) 

y=c(1,1) 

for(i in 1:45) 

{ 

y=rbind(y,Y[s[i,]]) 

} 

y=y[-1,] 

ybar=rowMeans(y) 

Ybar=mean(Y) 

Eybar=mean(ybar) 

Vybar=var(ybar) 

cat("Ybar=",Ybar, "VY=",8/20*var(Y),"Eybar=",Eybar,"Vybar=",44/45*Vybar) 

 

Output: Ybar= 32.8 VY= 468.4267 Eybar= 32.8 Vybar= 468.4267> 

 

From the above output we can see that E(�̅�) = �̅� 

and  V(�̅�) =
𝑵−𝒏

𝑵𝒏
 S2 

where E(�̅�) is Eybar  

 �̅�  is Ybar 

S2 is Var(Y) and V(�̅�) is Vybar 

Vybar is calculated using the formula 
∑(𝒚−�̅�)𝟐

𝒏−𝟏
 instead of the formula 

∑(𝒚−�̅�)𝟐

𝒏
 .  Hence  Vybar 

is multiplied by n-1 and divided by n. 

 
Q4. #WITH REPLACEMENT WITH n=2,N=10 

 

s=c(0,0) 
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for(i in 1:10) 

{ 

for(j in 1:10) 

{ 

#if(i<j) 

{ 

s=rbind(s,c(i,j)) 

} 

} 

} 

s=s[-1,] 

Y=c(8,3,1,11,22,15,37,50,99,82) 

y=c(1,1) 

for(i in 1:100) 

{ 

y=rbind(y,Y[s[i,]]) 

} 

y=y[-1,] 

ybar=rowMeans(y) 

Ybar=mean(Y) 

Eybar=mean(ybar) 

Vybar=var(ybar) 

cat("Ybar=",Ybar, "VY=",9/10*var(Y)/2,"Eybar=",Eybar,"Vybar=",99/100*Vybar) 

 

Output: Ybar= 32.8 VY= 526.98 Eybar= 32.8 Vybar= 526. 

 

From the above output we can see that E(�̅�) = �̅� 

and V(�̅�) =
𝑵−𝒏

𝑵𝒏
 S2 

where E(�̅�) is Eybar  

 �̅�  is Ybar 

S2 is Var(Y) and V(�̅�) is Vybar 

Vybar is calculated using the formula 
∑(𝒚−�̅�)𝟐

𝒏−𝟏
 instead of the formula 

∑(𝒚−�̅�)𝟐

𝒏
 .  Hence  Vybar 

is multiplied by n-1 and divided by n. 

 
#Q5 ## WITHOUT REPLACEMENT# n=3 N=10 ## 

 

s=c(0,0) 

for(i in 1:10) 

{ 

for(j in 1:10) 

{ 

for(k in 1:10) 

{ 

if(i<j & j<k) 

{ 

s=rbind(s,c(i,j,k)) 

} 

} 

} 

} 
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s=s[-1,] 

Y=c(8,3,1,11,12,15,22,40,52,70) 

y=c(1,1) 

for(i in 1:1000) 

{ 

y=rbind(y,Y[s[i,]]) 

} 

y=y[-1,] 

ybar=rowMeans(y) 

Ybar=mean(Y) 

Eybar=mean(ybar) 

Vybar=var(ybar) 

cat("Ybar=",Ybar, "VY=",7/30*var(Y),"Eybar=",Eybar,"Vybar=",119/120*Vybar) 

 

Output: Ybar= 23.4 VY= 123.8326 Eybar= 23.4 Vybar= 123.8326> 

 

From the above output we can see that E(�̅�) = �̅� 

and  V(�̅�) =
𝑵−𝒏

𝑵𝒏
 S2 

where E(�̅�) is Eybar  

 �̅�  is Ybar 

S2 is Var(Y) and V(�̅�) is Vybar 

Vybar is calculated using the formula 
∑(𝒚−�̅�)𝟐

𝒏−𝟏
 instead of the formula 

∑(𝒚−�̅�)𝟐

𝒏
 .  Hence  Vybar 

is multiplied by n-1 and divided by n. 

 
#Q6 ## WITH REPLACEMENT n= 3, N = 10 ## 

 

s=c(0,0,0) 

for(i in 1:10) 

{ 

for(j in 1:10) 

{ 

for(k in 1:10) 

{ 

#if(i<j & j<k) 

{ 

s=rbind(s,c(i,j,k)) 

} 

} 

} 

} 

s=s[-1,] 

Y=c(8,3,1,11,12,15,22,40,52,70) 

y=c(1,1,1) 

for(i in 1:1000) 

{ 

y=rbind(y,Y[s[i,]]) 

} 

y=y[-1,] 

ybar=rowMeans(y) 

Ybar=mean(Y) 
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Eybar=mean(ybar) 

Vybar=var(ybar) 

cat("Ybar=",Ybar, "VY=",9/10*var(Y)/3,"Eybar=",Eybar,"Vybar=",999/1000*Vybar) 

 

Output: Ybar= 23.4 VY= 159.2133 Eybar= 23.4 Vybar= 159.2133> 

 

From the above output we can see that E(�̅�) = �̅� 

and  V(�̅�) =
𝑵−𝒏

𝑵𝒏
 S2 

where E(�̅�) is Eybar  

 �̅�  is Ybar 

S2 is Var(Y) and V(�̅�) is Vybar 

Vybar is calculated using the formula 
∑(𝒚−�̅�)𝟐

𝒏−𝟏
 instead of the formula 

∑(𝒚−�̅�)𝟐

𝒏
 .  Hence  Vybar 

is multiplied by n-1 and divided by n. 

 

10.4 Advantages Simple Random Sampling 

 

Ease of use represents the biggest advantage of simple random sampling. Unlike more 

complicated sampling methods such as stratified random sampling and probability 

sampling, no need exists to divide the population into subpopulations or take any other 

additional steps before selecting members of the population at random. 

 

A simple random sample is meant to be an unbiased representation of a group. It is 

considered a fair way to select a sample from a larger population, since every member of the 

population has an equal chance of getting selected. 

 

10.5 Disadvantages Simple Random Sampling: 

 

A sampling error can occur with a simple random sample if the sample does not end up 

accurately reflecting the population it is supposed to represent. For example, in our simple 

random sample of 25 employees, it would be possible to draw 25 men even if the population 

consisted of 125 women and 125 men. For this reason, simple random sampling is more 

commonly used when the researcher knows little about the population. If the researcher 

knew more, it would be better to use a different sampling technique, such as stratified 

random sampling, which helps to account for the differences within the population, such as 

age, race or gender. 
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Chapter 11 
 

Stratified Random Sampling 
 

 

Dr. Asha A. Jindal, Associate Professor and Head, Department of Statistics,  

K. C. College, Churchgate, Mumbai – 400 020. 

 

 

11.1 Introduction 

 

In Stratified Random Sampling, heterogeneous population is divided into number of strata. 

Each strata is homogenous in its characteristics. We select a sample of specified size or using 

particular method of allocation from each stratum. 

 

Command used for drawing a sample from given population is  
sample (x, size, replace = FALSE, prob = NULL) 

 
Arguments 

‘x’  either a vector of one or more elements from which to choose, or a positive 

integer.   

‘Size’   a non-negative integer giving the number of items to choose. 

‘replace’  should sampling be with replacement? 

 ‘Prob’  

 

a vector of probability weights for obtaining the elements of the vector being 

sampled. 

 

11.2 Examples 

 

1) Following are data on number of Students enrolled in 3years in Statistics 

Department in K. C. College: 

 

2)  Class F.Y.B.Sc. S.Y.B.Sc. T.Y.B.Sc. 

 No. of Students 71 33 27 

 
Draw a stratified sample of size 20, 12 and 9 from each of the class. 
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Solution: 

 
> st=c(71,33,27) 

> st1=sample(st[1],20) 

> st1 

 [1] 36 35 34 45 55 32  1 46 24  6 48 40 30 23 38 20 31  5  2 60 

> st2=sample(st[2],12) 

> st2 

 [1] 25  9  7 24 11 31 22 32 12  1 20  2 

> st3=sample(st[3],9) 

> st3 

[1] 25  7 15 23  2  8  5 13  9 

 

3) Using following data, draw a stratified sample of size 50 from different strata by 

method of proportional allocation. 

Stratum 1 2 3 

Size(Ni) 500 300 200 

 

Solution: 
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> st=c(500,300,200) 

> N=sum(st) 

> ss=round((st/N)*50) 

> st1=sample(st[1],ss[1]) 

> st1 

 [1] 260  91 469 226 403 249 212 470 432 360 405 402 448 188 103 428 

[17] 290  64 449 491 208 413 232 455  86 

> st2=sample(st[2],ss[2]) 

> st2 

 [1] 275  25 184 291 106 290  77 266  37  12  65  80 292  61 252 

> st3=sample(st[3],ss[3]) 

> st3 

 [1] 125  56  73 152  29 124  76 183  87  15 
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Chapter 12 
 

Analysis of Varince (ANOVA) using R 
 

 

Dr. Kalpana Dilip Phal, Associate Professor and Head,  

B.N.Bandodkar College of Science, Thane, Chendani Thane (West) 400601. 

 

 

12.1 Introduction 

 

In this chapter a very popular statistical tool namely Analysis of  variance(ANOVA) has been 

explained . Statistical analysis of i)One way classified data  or ii)Two way classified data is 

explained and with the help of R code the execution is shown, together with interpretations 

of R output. 

 

12.2 ANOVA 

 

Test of significance for the difference between two population means can be carried out 

using t-test, under certain set of assumptions .But in many situations like biological or 

agricultural experiments we come upon a problem of comparing more than 2 population  

means. For example effect of different  conditions  on  seed germination is same or does it 

differ significantly? Different types of  feed on animals do have same gain in weight? etc. We 

are also interested in knowing what is the effect of various independent factors on the 

response or dependent variable. For example How  yield of paddy crop responses towards 

different fertilizers used such as vermi  compost, bio compost or chemical fertilizers.  

Analysis of  variance is a powerful tool for both of these purposes.  

 

Variations in observations of a data set is inherited. According to father of Dr. R. A. Fisher the 

causes of  these variations may be broadly classified as assignable and chance causes. In 

anova the estimate of total variations are split up into variations due to various independent 

factors  Some of which are assignable and remaining variation is due to chance factor. The 

variation is due to chance factor are experimental error 

 

In anova following assumptions are made  

i) Model applied is linear ii) Various effects influencing response variable are additive 

iii) Observations are independent and iv) Errors are normally distributed IID r.v.s 

 

According to the number of factors variations those influence response variable experiment 

yields  are considered as i)One way classified data or ii)Two way classified data etc. 
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12.2.1 One way ANOVA  

 

Here Y the response variable is influenced by one factor,ususlly called as treatments  

Model : yij is the response of jth experimental unit receiving ith treatment 

yij= µ +αi +εij where i=1 to p  and j=1 to ri, n=∑ 𝑟𝑖 

Assumptions  1)Model is additive  2), µ is general mean  

3) εi follows  IN(0 ,σ 2 ) 4) εi i are independent 5) αi effect of  ith treatment is fixed effect. 

The hypothesis we want to test regarding homogeneity of various treatment means in 

population which reduces to 

H0: α1  = α2  =………. αp  = 0 against H1: They differ significantly. 

 

ANOVA table  

Source  d.f  S.S MSS F ratio 

Between/treatment p-1 
SStreatment=∑

𝑦𝑖.
2

𝑟𝑖

𝑝
𝑖=1 −

𝑦..
2

𝑁
 

SStreatment

𝑝 − 1
 

MSStreatment

MSSerror
 

Within/error n-p +   

Total n-1 
∑ ∑ 𝑦𝑖𝑗

2

𝑗𝑖

−
𝑦..

2

𝑛
 

  

If  calculated F ratio >  Fα ,p-1,n-p ,then H0 is rejected. We conclude that treatments differ 

significantly at confidence level α % (usually α =5% or 1%). MSSerror  is treated as an 

unbiased estimate of σ 2 .The test of significance of all treatments simultaneously may 

exhibit significant differences in the means of treatment , but multiple comparison test for 

pairs of treatments guarantees which treatment means differ significantly. 

I)Critical difference  C.D: 

𝑡
(𝑛−𝑝),

𝛼

2

.  is two tailed α % value of t distribution with n-p d.f .C.D= . 𝑡
(𝑛−𝑝),

𝛼

2

.  √MSSerror 

|�̅�𝑖 − �̅�𝑗| > C.D   The n we conclude ith treatment shows significant difference from jth 

treatment  

II)Tukeys’Honest significant difference test  : |�̅�𝑖 − �̅�𝑗| > q α ,p ,,n-p √
MSSerror

𝑛
 Where  q α ,p ,,n-p 

is studentised range for which tables are available. 

 

12.2.2 Two  way ANOVA (r observations  per cell)  

Here there are two factors A an B say, influencing Y variable .The case with r observation 

per cell is discussed here. 

 

Model : yijk is the response of kth experimental unit receiving ith level of factor A and jth level 

of factor B 

yijk= µ +αi +βj + ϒij + εijk where i=1 to p j=1 to q,  k=1 to r 

 

Assumptions  1)Model is additive  2) µ is general mean  
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3) εijk follows  IN(0 ,σ 2 ) 4) εi ik are independent 5) αi effect of  ith level of factor A and βj is 

effect of jth level of factor B . ϒij  is interaction effect between ith level of factor A and  jth level 

of and are fixed effects. 

 

SStotal=SSA+SSB+SSAB+SSerror 

ANOVA 

Source d.f S.S MSS F ratio 

Factor A p-1 
SSA=∑

𝑦𝑖..
2

𝑞𝑟

𝑝
𝑖=1 −

𝑦...
2

𝑝𝑞𝑟
 

SSA

𝑝 − 1
 

FA 

Factor B q-1 
SSB=∑

𝑦.𝑗..
2

𝑞𝑟

𝑞
𝑗=1 −

𝑦...
2

𝑝𝑞𝑟
 

SSB

𝑞 − 1
 

FB 

Factor AB (p-1)(q-1) 
SSAB=∑ ∑

𝑦𝑖𝑗..
2

𝑟

𝑞
𝑗=1 − ∑

𝑦𝑖..
2

𝑞𝑟

𝑝
𝑖=1 −

∑
𝑦.𝑗..

2

𝑞𝑟

𝑞
𝑗=1 +

𝑦...
2

𝑝𝑞𝑟
 

SSAB

(𝑝 − 1)(𝑞 − 1)
 

FAB 

Residual pq(r-1) 

∑ ∑ ∑ 𝑦𝑖𝑗𝑘
2

𝑗𝑖

− ∑

𝑖

∑
𝑦𝑖𝑗..

2

𝑟

𝑞

𝑗=1𝑘

 

MSresidual  

Total pqr-1 
∑ ∑ ∑ 𝑦𝑖𝑗𝑘

2

𝑗𝑖

−
𝑦..

2

𝑛
𝑘

 
  

 

First test 1) H0 : ϒij =0 for all i,j 

FAB =MSAB/MSerror, FAB > F α, (p-1)(q-1) ,pq(r-1) ,then conclude that there is interaction 

between two factors.It makes no sense in carrying out following test. Rather we must held 

one level of factor A constant and test H0Busing one way ANOVA. And we must held one 

level of factor B constant and test H0A using one way ANOVA . 

2)H0A: α1  = α2  =………. α p = 0 against H1A: They differ significantly . FA =MSA/MSressidual 

3)H0B: β1  = β2  =………. β q= 0 against H1B: They differ significantly . FB =MSB/ MSressidual 

 

12.2.3 Two  way ANOVA (one  observations  per cell)  

 

Model : yij is the response unit receiving ith level of factor A and jth level of factor B 

yij= µ +αi + βj +εijk where i=1 to p  and j=1 to q, n=𝑝𝑞 

SStotal=SSA+SSB +SSerror 

 

ANOVA 

Source d.f S.S MSS F ratio 

Factor A p-1 SSA=∑
𝑦𝑖..

2

𝑞

𝑝
𝑖=1 −

𝑦...
2

𝑝𝑞
 

SSA

𝑝 − 1
 

MSSA

𝑀𝑆𝑆𝑒𝑟𝑟𝑜𝑟
 

Factor B q-1 
SSB=∑

𝑦.𝑗..
2

𝑞

𝑞
𝑗=1 −

𝑦...
2

𝑝𝑞
 

SSB

𝑞 − 1
 

MSSB

𝑀𝑆𝑆𝑒𝑟𝑟𝑜𝑟
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Error (p-1)(q-

1) ∑ ∑ ∑ 𝑦𝑖𝑗𝑘
2

𝑗𝑖

− ∑

𝑖

∑
𝑦𝑖𝑗..

2

𝑟

𝑞

𝑗=1𝑘

 
MSerror= 

SSerror

(𝑝 − 1)(𝑞 − 1)
 

 

Total pq-1 
∑ ∑ ∑ 𝑦𝑖𝑗𝑘

2

𝑗𝑖

−
𝑦..

2

𝑛
𝑘

 
  

The hypothesis we want to test regarding homogeneity of various means of  

i)factor A  and ii)factor B in population which reduces to 

 

i)H0A: α1  = α2  =………. αp = 0 against H1A: They differ significantly . 

ii)If  calculated F ratio >  Fα ,p-1,n-1 ,then H0A is rejected. We conclude that means of levels of 

factor A differ significantly at α %. 

 

i)H0B: β1  = β2  =………. β q= 0 against H1B: They differ significantly . 

ii)If  calculated F ratio >  Fα ,q-1,n-1 ,then H0B is rejected. We conclude that means of levels of 

factor B differ significantly at α %. 

 

R code for ANOVA 

 

Examples 1: Th grade point average (GPA-4 point scale) of students participating  

in college sports program are compared .The data are as under. 

Football Tennis Hockey 

3.2 3.8 2.6 

2.6 3.1 1.9 

2.4 2.6 1.7 

2.4 3.9 2.5 

1.8 3.2 1.9 

Do different sports  have significant effect on GPA? .Apply Tuckey’s multiple comparison  

test. 

 

Solution . Here we apply ANOVA on way as GPA are classified according to one factor = 

sports  
#data should be read treatment wise #To read treatments 

>GPA=c(3.2,2.6,2.4,2.4,1.8,3.8,3.1,2.6,3.9,3.3,2.6,1.9,1.7,2.5,1.9) 

>Sport=c(rep("Football",5),rep("Tennis",5),rep("Hockey",5)) 

>d=data.frame(Sport,GPA) 

# anova oneway 

>av1=aov(GPA~Sport,data=d) 

>summary(av1) 

 

Output: 
 Df Sum Sq Mean Sq F value Pr(>F)  

Sport 2 3.929 1.9647 8.456 0.00511**  

Residuals 12 2.788 0.2323    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Interpretation: As F calculated is highly significant(**)Treatments differ significantly 

sports person’s GPA differ according sport. We apply Tuckey’s test for comparing sports 

pairwise.  

 
>TukeyHSD(av1,"Sport",ordered=F,conf.level=0.95) 

# One can also use  plot(TukeyHSD(av1,"Sport")) 

Output: 

Tukey multiple comparisons of means    95% family-wise confidence level 

Fit: aov(formula = GPA ~ Sport, data = d)$ 

 

Sport diff lwr upr p adj  

Hockey-Football -0.36 -1.17329741 0.4532974 0.4860718   

Tennis-Football 0.86 0.04670259 1.6732974 0.0381404   

Tennis-Hockey 1.22 0.40670259 2.0332974 0.0046180   

 

Interpretation: No sport shows significant difference  in GPA means 

 

Example2 : Four varieties of wheat are planted at  3 different  locations and their yields 

(units per plot)are recorded as below.:  

Variety↓  

Location→                

Location 1 Location 2 Location 3 

Variety1 14.3 7.6 19.2 

Variety2 13.4 3.9 12.6 

Variety3 18.4 13.4 15.1 

Carry out analysis to check whether different locations or different varieties have 

significant effect on yield of wheat?.. 

 

Solution:  
#data should be read variety wise  

>yield=c(14.3,13.4,18.4,7.6,3.9,13.4,19.2,12.6,15.1) 

>loc=c(rep("L1",3),rep("L2",3),rep("L3",3)) 

>variety=c("V1","V2","V3","V1","V2","V3","V1","V2","V3") 

>result=aov(yield~ loc+variety) 

>summary(result) 

 

Output: 
 Df Sum Sq Mean Sq F value Pr(>F)  

loc 2 103.79 51.89 6.389 0.0568  

variety 2 49.79 24.89 065 0.1559  

Residuals 4 32.49 8.12    

 

Interpretation: The Calculated F ratio are not significant, as p value is  > .05 The yield does 

not change significantly as location changes. Even the differences in varieties do not have 

significant influence on yield. Varieties do not differ significantly. 

 

Example 3: An engineer suspects that surface finish of a metal part is influenced by type of 

paint used and drying time.Drying times are selected by him are 20,25,30 minutes. and  he 
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randomly choses paint I, II.Conducted experiment yielded following data analyse it. Is there 

any interaction present between paint and drying time? 

 

paint↓ Drying Times(minutes) 

20 25 30 

I 74,64,50 73,61,44 78,85,92 

II 92,86,68 98,73,88 66,45,85 

 

Solution:  
> DT=c(74,64,50,92,86,68,73,61,44,98,73,88,78,85,92,66,45,85) 

> paint=c(rep("I",3),rep("II",3)) 

> DRT1=c(paint) 

> DRT2=c(paint) 

> DRT3=c(paint) 

> DRT=c("DRT1","DRT2","DRT3") 

> d=data.frame(DT,paint,DRT) 

> fit=aov(DT~paint*DRT,data=d) 

fit=aov(DT~paint*DRT,data=d) 

> summary(fit) 

 

Output: 
 Df  Sum Sq Mean Sq F value Pr(>F)  

paint 1 356 355.6 1.250 0.285  

DRT 2 421 210.4 0.740 0.498  

paint:DRT 2 315 157.4 0.553 0.589  

Residuals 12 3413 284.4    

 

Interpretation:  Interaction between drying time and paint is not significant. we can 

perform test for equality of paint means or for drying time means. Using error or error 

+interaction S.S. 

i) H0A: α1  = α2  =………. αp = 0 against H1A: paints  differ significantly .ii)Since calculated F ratio 

<  Fα ,p-1,n-1 , so H0A is not  rejected. We conclude that means of paints  do not differ significantly 

at confidence level 5 %. 

ii) H0B: β1  = β2  =………. β q= 0 against H1B: Drying  times differ significantly . 

ii) Here calculated F ratio <  Fα ,q-1,n-1 ,so H0B is not  rejected. We conclude that means of Dryng  

timesdo not  differ significantly at 5 %. 
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Chapter 13 
 

Designs of Experiment using R 
 

 

Dr. Kalpana Dilip Phal, Associate Professor and Head,  

B.N.Bandodkar College of Science, Thane, Chendani Thane (West) - 400601 

 

 

13.1 Introduction 

 

Designs of experiment is a logical construction or plan of the experiment .the inferences 

drawn after analyzing the data on such experiments are valid, and have very small chance of 

uncertainty, which may be predefined. This theory is based on principles of i) Replication,  

ii) Randomization and ii)Local control. 

 

As a prerequisite learner should get acquainted with the terminologies such as plots, 

treatments, blocks, experimental error etc. for clearness of the subject background. 

 

13.2 Completely randomized design (CRD) 

 

Completely randomized design (CRD)is based on randomization and replication. Here p 

treatment compared for their effect. ith treatment is  applied ri times completely randomly 

over experimental units. 

 

The analysis of this design is analogous to ANOVA one way. SStotal=SS(due to treatment) 

+SSerror 

H0: α1  = α2  =………. αp  = 0 against H1: They differ significant ly. 

 

ANOVA table  

Source d.f S.S MSS F ratio 

/treatment p-1 
SStreatment=∑

𝑦𝑖.
2

𝑟𝑖

𝑝
𝑖=1 −

𝑦..
2

𝑁
 

SStreatment

𝑝 − 1
 F=

MSStreatment

MSSerror
 

/error n-p +   

Total n-1 
∑ ∑ 𝑦𝑖𝑗

2

𝑗𝑖

−
𝑦..

2

𝑛
 

  

 

If  calculated F ratio >  Fα ,p-1,n-p ,then H0 is rejected. We conclude that treatments differ 

significantly at confidence level α % (usually α =5% or 1%). 
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13.3 Randomized Block design (RBD)  

 

This design is used when experimental units are not uniform ,but they can be grouped into 

homogeneous strata or groups known as replicate or block .All treatments are randomly 

applied  within each block .So if we have q blocks each is complete replicate of p treatments. 

Here p treatments  compared for their effect. Any  treatment is  applied q times. The analysis 

of this design is analogous to ANOVA two way. 

 

SStotal=SS due to treatment +SS due to block  + SSerrorAnova is  

 

Source d.f S.S MSS F ratio 

Treatmnt p-1 
SST=∑

𝑦𝑖..
2

𝑞

𝑝
𝑖=1 −

𝑦...
2

𝑝𝑞
 

SST

𝑝 − 1
 𝐹 =𝑇

MSST

𝑀𝑆𝑆𝑒𝑟𝑟𝑜𝑟
 

Block q-1 
SSB=∑

𝑦.𝑗..
2

𝑞

𝑞
𝑗=1 −

𝑦...
2

𝑝𝑞
 

SSB

𝑞 − 1
 𝐹𝐵 =

MSSB

𝑀𝑆𝑆𝑒𝑟𝑟𝑜𝑟
 

Error (p-1)(q-1) 
∑ ∑ ∑ 𝑦𝑖𝑗𝑘

2

𝑗𝑖

− ∑

𝑖

∑
𝑦𝑖𝑗..

2

𝑟

𝑞

𝑗=1𝑘

 
MSerror = 

SSerror

(𝑝 − 1)(𝑞 − 1)
 

 

Total pq-1 
∑ ∑ ∑ 𝑦𝑖𝑗𝑘

2

𝑗𝑖

−
𝑦..

2

𝑛
𝑘

 
  

 

The hypothesis we want to test regarding homogeneity of various means of  

i)treatments  and ii)Blocks in population which reduces to 

 

i)H0A: α1  = α2  =………. αp = 0 against H1A: Treatments differ significantly . 

ii)H0B: β1  = β2  =………. β q= 0 against H1B: Blocks  differ significantly . 

 

i)If  calculated FT ratio >  Fα ,p-1,n-1 ,then H0B is rejected. We conclude that treatment means 

differ significantly at α %. 

ii)If  calculated FB ratio >  Fα ,q-1,n-1 ,then H0B is rejected. We conclude that block means differ 

significantly at α %. 

 

13.4 Latin Square design (LSD) 

 

In RBD randomization is restricted.If we come across homogeneous blocks then only we can 

plan RBD.LSD  assumes that variation in treatment should be studied inboth perpendicular 

directions and not to be studied only within block (one direction) in LSD if there are p 

treatments we plan experiment in p X p plots and treatments are applied randomly in both 

directions such that every( horizontal)row arrangement is a complete replicate of  p 

treatments as well as every( vertical) column arrangement is a complete replicate of p 

treatments. 

 

Model: yijk is the response of ith row , jth column receiving kth treament  
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yijk= µ +αi +βj + τk + εijk where i=1 to p j=1 to p,  k=1 to p 

Assumptions  1)Model is additive  2), µ is general mean  

3) εijk follows  IN(0 ,σ 2 ) 4) εi ik are independent 5) αi effect of  ith row βj is effect of jth column . 

τk  is effect due to kth is treatment . 

SStotal=SS due to treatment +SS due to row+ SS due to  column+SSerror. 

 

ANOVA 

Source d.f S.S MSS F ratio 

Row  p-1 
SS row=∑

𝑦𝑖..
2

𝑝

𝑝
𝑖=1 −

𝑦...
2

𝑝2
 

SSR

𝑝 − 1
 𝐹𝑅 =

MSSR

𝑀𝑆𝑆𝑒𝑟𝑟𝑜𝑟
 

Column p-1 
SS column=∑

𝑦.𝑗..
2

𝑝

𝑞
𝑗=1 −

𝑦...
2

𝑝2
 

SSC

𝑝 − 1
 𝐹𝐶 =

MSSC

𝑀𝑆𝑆𝑒𝑟𝑟𝑜𝑟
 

Treamernt p-1 
SS treat=∑ ∑

𝑦.𝑘..
2

𝑝

𝑝
𝑗=1 −

𝑦...
2

𝑝2
 

SST

(𝑝 − 1)
 𝐹𝑇 =

MSST

𝑀𝑆𝑆𝑒𝑟𝑟𝑜𝑟
 

Error (p-1)(p-1) + M Serror  

Total n-1 
∑ ∑ ∑ 𝑦𝑖𝑗𝑘

2

𝑗𝑖

−
𝑦…

2

𝑛
𝑘

 
  

The hypothesis we want to test regarding homogeneity of various means of i)treaments  and 

ii)Rows iii)Columns  in population which reduces to 

 

i)H0A: α1  = α2  =………. αp = 0 against H1A: Rows differ significantly . 

ii)H0B: β1  = β2  =………. β q= 0 against H1B: Columns   differ significantly . 

iii)H0C: τ1  = τ2  =………. τp = 0 against H1C: Treatments differ significantly . 

 

i)If  calculated FR ratio >  Fα ,p-1,n-1 ,then H0A is rejected. We conclude that row means differ 

significantly at α %. 

ii)If  calculated FC ratio >  Fα ,p-1,n-1 ,then H0B is rejected. We conclude that block means differ 

significantly at α %. 

iii)If  calculated FT ratio >  Fα ,p-1,n-1 ,then H0C is rejected. We conclude that treatment means 

differ significantly at α %. 

 

Example 1 Athletes  are fed  three types of diets diet A, diet B and diet C. After the 

experimentation gain in weights are measured for recorded as below .  

 

Diet Type Gain in Weight 

A 3,6,7,4 

B 10,12,11,14,8,6 

C 8,3,2,5 

 

Solution: 
 # it is CRD with 3 treatments and unequal no of observations per treatment. 

>gainwt=c(3,6,7,4,10,12,11,14,8,6,8,3,2,5) 

>diet=c(rep("A",4),rep("B",6),rep("C",4)) 
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>d=data.frame(gainwt,diet) 

>fit=aov(gainwt~diet,data=d) 

>summary(fit)                         

 

Output: 
 Df Sum Sq Mean Sq F value Pr(>F)   

diet 2 101.10 50.55 7.74 0.00797**  

Residuals  11 71.83 6.53     

 

Signif.codes: 0  0.001  0.01  0.05  0.1  1 

 

Interpretation: The three types of diets have significant effect on gain in weight of 

athletes. 

 

Example 2 :A  researcher wishes to see four  brands of gasoline and three types of 

automobile used have any effect on consumption of gasoline .Following are data on miles 

per gallon are recorded. 

Automobile 

Brand of Gas. 

Automobile 

Car Bus Truck 

A 10 11 15 

B 10 9 12 

C 8 10 11 

D 8 8 11 

 

Solution:  
>miles=c(10,10,8,8,11,9,10,8,15,12,11,11) 

>AM=c(rep("Car",4),rep("Bus",4),rep("Truck",4)) 

>brand=c(rep(A,3),rep(B,3),rep(C,3),rep(D,3)) 

>d=data.frame(miles,AM,brand) 

>fit=aov(miles~brand+AM,data=d) 

>summary(fit) 

 

Output: 
 Df R Mean Sq F value Pr(>F)  

brand 3 10.250 3.417 2.795 0.131  

AM 2 26.667 13.333 10.909 0.010*  

Residuals   6 7.333 1.222    

Signif. codes:   0   0.001   0.01   0.05   0.1   1  

 

Interpretation: Automobiles differ significantly in mileage at 5% level .Whereas brand 

means do not differ significantly. 

Example3 :Following are results of an experiment in L.S.D . Analyse and comment on your 

findings. 

A 

12 

C 

19 

B 

10 

D 

8 

C 

18 

B 

12 

D 

6 

A 

7 
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B 

22 

D 

10 

A 

5 

C 

21 

D 

12 

A 

7 

C 

27 

B 

17 

 

 

Solution:  

 #LSD with p treatments is conducted over n=p2 plots,p rows p columns. 
>y=c(12,19,10,8,18,12,6,7,22,10,5,21,12,7,27,17) 

>colu=c(1,2,3,4) 

>cmn=c(rep(colu,4)) 

>treatment=c("A","C","B","D","C","B","D","A","B","D","A","C","D","A","B","C") 

r>row=c(rep(1,4),rep(2,4),rep(3,4),rep(4,4)) 

>d=data.frame(y,treatment,row,cmn) 

>ft=aov(y~ row+ cmn+ treatment) 

summary(fit) 

 

Output: 
 Df Sum Sq Mean Sq F value Pr(>F)  

Row 3 94.5 31.50 0.648 0.612  

Cmn 3 81.5 27.17 0.559 0.661  

Ttreatment 3 315.4 105.13 2.163 0.194  

Residuals 6 291.6 48.6    

 

Interpretation:  

i)H0A: α1  = α2  =………. αp = 0 against H1A: Rows differ significantly . 

ii)H0B: β1  = β2  =………. β q= 0 against H1B: Columns   differ significantly . 

iii)H0C: τ1  = τ2  =………. τp = 0 against H1C: Treatments differ significantly . 

 

i)Here  calculated FR ratio < Fα ,3,6 ,then H0A is rejected. We conclude that row means differ 

significantly at 5 %. 

i) Here calculated FC ratio <  Fα , 3,6,then H0B is rejected. We conclude that block means differ 

significantly at 5 %. 

iii) Here calculated FT ratio <  Fα , 3,6,then H0C is rejected. We conclude that treatment means 

differ significantly at 5 %. 
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Chapter 14 
 

Linear Programming Problem, Transportation 

Problem and Assignment problem  

using R-Software 
 

 
Dr. S. B. Muley, Assistant Professor, Department of Statistics,   

K. C. College, Churchgate, Mumbai – 400 020 

 

 
14.1 General LPP 

 
Objective Function 

S.T. 

Constraints 

Non-Negativity restriction 

 
Package used:    lpSolve 
 

14.2 Linear Programming Problem 

 

14.2.1 Usage 

 
lp (direction = "min", objective.in, const.mat, const.dir, const.rhs, 

 transpose.constraints = TRUE, int.vec, presolve=0, compute.sens=0, 

        binary.vec, all.int=FALSE, all.bin=FALSE, scale = 196, dense.const,  

        num.bin.solns=1, use.rw=FALSE) 

 

14.2.2 Arguments 

direction Character string giving direction of optimization: "min" 
(default) or "max." 

objective.in Numeric vector of coefficients of objective function 

const.mat Matrix of numeric constraint coefficients, one row per 
constraint, one column per variable (unless 
transpose.constraints = FALSE; see below). 

const.dir Vector of character strings giving the direction of the 
constraint: each value should be one of "<," "<=," "=," "==," 
">," or ">=". (In each pair the two values are identical.) 
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const.rhs Vector of numeric values for the right-hand sides of the 
constraints. 

transpose.constraints By default each constraint occupies a row of const.mat, and 
that matrix needs to be transposed before being passed to 
the optimizing code. For very large constraint matrices it 
may be wiser to construct the constraints in a matrix 
column-by-column. In that case set transpose.constraints to 
FALSE. 

 

Example 1: 

Solve the following LPP upto second simplex table and check whether the solution obtained 

at the second table is optimum or not.                    

Max Z = 3x1 + 2x2 + 5x3   

Subject  to x1 + 2x2 + 2x3   8;  3x1 + 2x2 + 6x3   12;  2x1 + 3x2 + 4x3   12;  

x1,  x2, x3  ≥ 0. 

 
# defining parameters 

obj .fun <- c(3 ,2,5) 

constr <- matrix (c(1,2,2,3,2,6,2,3,4) , ncol = 3, byrow =TRUE ) 

constr .dir <- c(" <=", " <=", "<=") 

rhs <- c(8 , 12 , 12) 

#Solving model 

prod .sol <- lp("max", obj.fun , constr , constr.dir , rhs , compute . sens = 

FALSE ) 

 

R window showing execution: 

 
 

Output for the LPP: 
> obj.fun <- c(3 ,2,5) 

> constr <- matrix (c(1,2,2,3,2,6,2,3,4), ncol = 3, byrow =TRUE ) 

> constr.dir <- c("<=", "<=", "<=") 

> rhs <- c(8,12,12) 

> prod.sol <- lp("max", obj.fun, constr, constr.dir, rhs , compute.sens = 

FALSE ) 
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> prod.sol$ solution #decision variables values (x1,x2,x3) 

[1] 4 0 0 

> prod.sol : Success: the objective function is 12 

 

14.3 Transportation Problem 

 

14.3.1 Usages 

 
lp.transport (cost.mat, direction="min", row.signs, row.rhs, col.signs, 

              col.rhs, presolve=0, compute.sens=0, integers = 1:(nc*nr) ) 

 

14.3.2 Arguments 

 

cost.mat Matrix of costs; ij-th element is the cost of transporting one item from 

source i to destination j. 

Direction Character, length 1: "min" or "max" 

row.signs Vector of character strings giving the direction of the row constsraints: 

each value should be one of "<," "<=," "=," "==," ">," or ">=." (In each pair 

the two values are identical.) 

row.rhs Vector of numeric values for the right-hand sides of the row constraints. 

col.signs Vector of character strings giving the direction of the column constraints: 

each value should be one of "<," "<=," "=," "==," ">," or ">=." 

col.rhs Vector of numeric values for the right-hand sides of the column 

constraints. 

Presolve Numeric: presolve? Default 0 (no); any non-zero value means "yes." 

Currently ignored. 

compute.sens Numeric: compute sensitivity? Default 0 (no); any non-zero value means 

"yes." 

Integers Vector of integers whose ith element gives the index of the ith integer 

variable. Its length will be the number of integer variables. Default: all 

variables are integer. Set to NULL to have no variables be integer. 

 

Example 2: 

Obtain the optimum solution for the following transportation problem                

Factory 
Warehouse 

Capacity 
W1 W2 W3 W4 

F1 15 6 14 3 13 

F2 8 13 5 4 16 

F3 12 7 10 9 6 

Requirement 8 9 14 4 35 
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Define matrix of the size row X column 

 

R window showing execution: 

 
 

Output for the LPP: 
> # Define Matrix 

> A=matrix(0,3,4) 

> A[1,1]=15;A[1,2]=6;A[1,3]=14;A[1,4]=3;A[2,1]=8; 

A[2,2]=13;A[2,3]=5;A[2,4]=4;A[3,1]=12;A[3,2]=7; 

> A[3,3]=10;A[3,4]=9 

> # Set up constraint signs and right-hand sides. 

> row.signs <- rep ("=", 3);  row.rhs <- c(13,16,6);  col.signs <- rep ("=", 

4);  col.rhs <- c(8,9,14,4) 

> # Run 

> s=lp.transport (A, "min", row.signs, row.rhs, col.signs, col.rhs);  

> s; Success: the objective function is 224  

> s$solution 

     [,1] [,2] [,3] [,4] 

[1,]    0    9    0    4 

[2,]    2    0   14    0 

[3,]    6    0    0    0 

 

 

14.4 Assignment Problem:   lp.assign {lpSolve} 

 

14.4.1 Usage 
 

lp.assign (cost.mat, direction = "min", presolve = 0, compute.sens = 0) 

 

14.4.2 Arguments 

 

cost.mat Matrix of costs: the ij-th element is the cost of assigning source i to 

destination j. 

direction Character vector, length 1, containing either "min" (the default) or "max" 
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presolve Numeric: presolve? Default 0 (no); any non-zero value means "yes." 

Currently ignored. 

compute.sens Numeric: compute sensitivity? Default 0 (no); any non-zero value means 

"yes." In that case presolving is attempted. 

 

Example 3: 

Obtain the optimum solution using Hungarian method for the following assignment table 

giving  costs  of doing different jobs on different machines.   

 

             

Job 

Machines 

M1 M2 M3 M4 

A 10 12 9 11 

B 5 10 7 8 

C 12 14 13 11 

D 8 15 11 9 

 

R window showing execution: 

 
 

Output for the LPP: 
> A=matrix(0,4,4) 

> A[1,1]=10;A[1,2]=12;A[1,3]=9;A[1,4]=11;A[2,1]=5; 

> A[2,2]=10;A[2,3]=7;A[2,4]=8;A[3,1]=12;A[3,2]=14; 

> A[3,3]=13;A[3,4]=11;A[4,1]=8;A[4,2]=15;A[4,3]=11;A[4,4]=9 

> # Set up constraint signs and right-hand sides. 

> s=lp.assign(A) 

> s 

Success: the objective function is 37  

> s$solution 

     [,1] [,2] [,3] [,4] 

[1,]    0    0    1    0 

[2,]    1    0    0    0 

[3,]    0    1    0    0 

[4,]    0    0    0    1 
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Chapter 15 
 

Theory of Estimation 
 

 

Mrs. Shailaja J. Rane, Assistant Professor, Department of Statistics,  

K. C. College, Churchgate, Mumbai – 400 020. 

 

 

15.1 Introduction 

 
Estimation (or estimating) is the process of finding an estimate, or approximation, which 

is a value that is usable for some purpose even if input data may be incomplete, uncertain, 

or unstable. The value is nonetheless usable because it is derived from the best information 

available. Typically, estimation involves "using the value of a statistic derived from 

a sample to estimate the value of a corresponding population parameter”. The sample 

provides information that can be projected, through various formal or informal processes, 

to determine a range most likely to describe the missing information. An estimate that turns 

out to be incorrect will be an overestimate if the estimate exceeded the actual result, and 

an underestimate if the estimate fell short of the actual result.  

 

Estimation is the process of making inferences from a sample about an unknown population 

parameter using an estimator. An estimator is a statistic that is used to infer the value of an 

unknown parameter. 

 

A point estimate is the best estimate of the parameter based on a sample. It should be 

obvious that any point estimate is not absolutely accurate. It is an estimate based on only a 

single random sample. If repeated random samples were taken from the population, the 

point estimate would be expected to vary from sample to sample. 

 

A confidence interval is an estimate constructed on the basis that a specified proportion of 

the confidence intervals include the true parameter in repeated sampling. How frequently 

the confidence interval contains the parameter is determined by the confidence level. 95% 

is commonly used and means that in repeated sampling 95% of the confidence intervals 

include the parameter. 99% is sometimes used when more confidence is needed and means 

that in repeated sampling 99% of the intervals include the true parameter. It is unusual to 

use a confidence level of less than 90% as too many intervals would fail to include the 

parameter. 

 

15.2 Uses of estimation 

 

In statistics, an estimator is the formal name for the rule by which an estimate is calculated 

from data, and estimation theory deals with finding estimates with good properties. 



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 15 – Theory of Estimation 
 

 
ISBN 978-93-80788-71-5 135 

 

This process is used in signal processing, for approximating an unobserved signal on the 

basis of an observed signal containing noise.  

 

For estimation of yet-to-be observed quantities, forecasting and prediction are applied. A 

Fermi problem, in physics, is one concerning estimation in problems which typically involve 

making justified guesses about quantities that seem impossible to compute given limited 

available information. 

 

Estimation is important in business and economics, because too many variables exist to 

figure out how large-scale activities will develop.  

 

Estimation in project planning can be particularly significant, because plans for the 

distribution of labour and for purchases of raw materials must be made, despite the inability 

to know every possible problem that may come up. A certain amount of resources will be 

available for carrying out a particular project, making it important to obtain or generate a 

cost estimate as one of the vital elements of entering into the project. The U.S. Government 

Accountability Office defines a cost estimate as, "the summation of individual cost elements, 

using established methods and valid data, to estimate the future costs of a program, based 

on what is known today", and reports that "realistic cost estimating was imperative when 

making wise decisions in acquiring new systems”. Furthermore, project plans must not 

underestimate the needs of the project, which can result in delays while unmet needs are 

fulfilled, nor must they greatly overestimate the needs of the project, or else the unneeded 

resources may go to waste. 

 

15.3 Point estimate and Confidence interval: 

 

Case 1 :  

Point estimate for µ is  𝒙. 

100(1-α)%  confidence interval for Population mean(µ)  can be found using the 

formula  

P( �̅� ± 𝒁𝜶/𝟐σ/√𝒏 ) = 1-α 

 

R programming helps us to calculate this using inbuilt functions as follows: 

Mean(�̅�) can be found using the function 
mean (data) 

Standard deviation can be found using  
sd(data) 

To find  𝑍𝛼/2 

z = qnorm(alp/2, mean = 0, sd = 1, lower.tail = 0) 

If sample size is small and standard deviation is unknown use t statistic value instead of 𝑍𝛼/2. 

This can be found using the following inbuilt function. 
t = qt(alp/2,d.o.f,lower.tail = 0) 

d.o.f = n-1 

Lower limit and Upper limit can be found using R as follows: 
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l=xbar-z*s/sqrt(n); 

u=xbar+z*s/sqrt(n) 

 

Note: Confidence interval for population mean can also be found using Rmisc . Install 

Rmisc   from packages, cran cloud. Then load and use the following inbuilt function. 

CI(X) gives default lower and upper limit  
CI(X, ci = 0.95) gives 95% confidence interval for mean 

 

Example: 

#Q1 

xbar=3.5;s=2.61;n=900;alp=0.05 
> z=qnorm(alp/2,0,1,lower.tail=0)  

> l=xbar-z*s/sqrt(n);u=xbar+z*s/sqrt(n) 

> #95% CI for mean 

> paste("(",l,",",u,")") 

 

Output 
[1] "(3.32948313334502, 3.67051686665498)" 

 

#Q2 

x=c(20,16,26,27,23,22,18,24,25,19,18,28,25,27,22) 
> xbar=mean(x);n=length(x);s=sd(x) 

> alp=.1 

> t=qt(alp/2,n-1,lower.tail=0)  

> l=xbar-t*s/sqrt(n);u=xbar+t*s/sqrt(n) 

> #90% CI for mean 

> paste("(",l,",",u,")") 

 

Output 
[1] "(20.9506711391254, 24.3826621942079)" 

 

Case 2:  

Point estimation for variance (σ2) is s2 

100(1-α)% confidence interval for variance using the formula 

P( (n-1) s2/χ2(1-α/2,n-1)<σ2< (n-1) s2/χ2(α/2,n-1)) = 1 – α 

R programming commands used to calculate  s2 and χ2 table values are as follows: 
s=sd(x) 

c1=qchisq(1-alp/2,n-1,lower.tail=1) 

c2=qchisq(alp/2,n-1,lower.tail=1)  

l = (n-1)*s^2/c1;  

u = (n-1)*s^2/c2 

paste("(",l,",",u,")") 

 

Example: 

x=c(20,16,26,27,23,22,18,24,25,19,18,28,25,27,22) 
xbar=mean(x);n=length(x);s=sd(x) 

alp=.05 

> c1=qchisq(1-alp/2,n-1,lower.tail=1) 
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> c2=qchisq(alp/2,n-1,lower.tail=1)  

> l=(n-1)*s^2/c1;u=(n-1)*s^2/c2 

> #95% CI for population variance 

> paste("(",l,",",u,")") 

 

Output 
[1] "(7.63175197521812, 35.4135784339703)" 

 

Case 3: 

Point estimation for  µ1- µ2 is �̅�1 - �̅�2 

100(1-α)% confidence interval for difference of means. 

Formula: P((�̅�1- �̅�2)± 𝒁𝜶/𝟐(s(√
1

𝑛1
+

1

𝑛2
  )) 1 – α 

R programming commands used: 
n1=length(x) 

n2=length(y) 

xbar=mean(x) 

ybar=mean(y) 

s1=sd(x) #SD of X 

s2=sd(y) 

s=sqrt(((n1-1)*s1^2+(n2-1)*s2^2)/(n1+n2-2)) 

t=qt(.05/2,n1+n2-2,lower.tail=0) 

l=xbar-ybar-t*s*sqrt(1/n1+1/n2) 

u=xbar-ybar+t*s*sqrt(1/n1+1/n2) 

 

Example: 

Q1. 
> x=c(74,77,74,73,79,76,82,72,75,78,77,78,76,76) 

> y=c(70,75,74,70,69,72,76,72,72,77,77,72,75,78,72,74,75) 

> n1=length(x) 

> n2=length(y) 

> xbar=mean(x) 

> ybar=mean(y) 

> s1=sd(x) #SD of X 

> s2=sd(y) 

> s=sqrt(((n1-1)*s1^2+(n2-1)*s2^2)/(n1+n2-2)) 

> t=qt(.05/2,n1+n2-2,lower.tail=0) 

> #i) 

> l=xbar-ybar-t*s*sqrt(1/n1+1/n2) 

> u=xbar-ybar+t*s*sqrt(1/n1+1/n2) 

> #95% CI for difference of means 

> paste("(",l,",",u,")") 

 

Output 
[1] "(0.733919803307959, 4.63582809585169)" 

 

Q2. 
>n1=7;n2=8;xbar=1234;ybar=1036;s1=34;s2=40 

> alp=.05;t=qt(alp/2,n1+n2-2,lower.tail=0)  

> l=ybar-t*s2/sqrt(n2);u=ybar+t*s2/sqrt(n2) 
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> #90% CI for difference of means 

> paste("(",l,",",u,")") 

 

Output 
[1] "(1005.44777346305, 1066.55222653695)" 

 

Case 4:  

Point estimation for σ12/ σ22 is s12/s22 

100(1-α)% confidence interval for Ratio of variances 

Formula : P( s12/(s22F(α/2,n1- 1,n2-1))≤σ12/σ22≤ s12 F(α/2,n1- 1,n2-1)/s22) = 1-α 

 

R programming commands used: 
f=qf(alp/2,n1-1,n2-1,lower.tail=0) 

l=s1^2/(s2^2*f) 

u=(s1^2*f)/s2^2) 

paste("(",l,",",u,")") 

 

Example: 

Q1. 
>x=c(74,77,74,73,79,76,82,72,75,78,77,78,76,76) 

>y=c(70,75,74,70,69,72,76,72,72,77,77,72,75,78,72,74,75) 

>n1=length(x) 

>n2=length(y) 

>xbar=mean(x) 

>ybar=mean(y) 

>s1=sd(x) #SD of X 

>s2=sd(y) 

>s=sqrt(((n1-1)*s1^2+(n2-1)*s2^2)/(n1+n2-2)) 

>t=qt(.05/2,n1+n2-2,lower.tail=0) 

> alp=.01;f=qf(alp/2,n1-1,n2-1,lower.tail=0) 

> l=s1^2/(s2^2*f);u=(s1^2*f)/s2^2 

> #99% C.I for ratio of variance 

> paste("(",l,",",u,")") 

 

Output 
[1] "(0.236138371356271, 3.83768581270189)" 

 

#Q2 
> n1=7;n2=8;xbar=1234;ybar=1036;s1=34;s2=40 

> alp=0.1;f=qf(alp/2,n1-1,n2-1,lower.tail=0) 

> l=s1^2/(s2^2*f);u=(s1^2*f)/s2^2 

> #99% C.I for ratio of variance 

> paste ("(",l,",",u,")") 

 

Output 
[1] "(0.18688717562124, 2.79316249638198)" 
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Chapter 16 
 

Financial Functions 
 

 

Mrs. Pratiksha M. Kadam, Assistant Professor, Department of Statistics,  

K. C. College, Churchgate, Mumbai – 400 020. 

 

 

16.1 Introduction 

 

In this chapter we discuss basic financial functions in R: 

To use the financial functions in R, we need the package “FinCal” to be installed from CRAN. 

Before we start executing financial functions listed below, we must load package “FinCal”. 

 

Procedure to install “FinCal” Package in R: 

In R Gui, Click on Packages menu and select the option “Install package(s)”, Select 0-cloud 

[https] from the country options and click on OK. Then a list of functions will be displayed. 

From that list select function “FinCal” and click on Install. 

 

Procedure to Load “FinCal” package in R: 

In R Gui, Click on Packages menu and select the option “Load package”. List of installed 

packages will be shown. From that list select “FinCal” and click on OK. 

 

16.2 Effective Annual Rate (ear( ) function) 

 

Effective Annual Rate is the actual rate of interest actually earned on an investment or paid 

on a loan as a result of compounding interest over the given period of time. 

Formula: 

EAR= (1 + 𝑟/𝑛)n 

r= Nominal rate of interest  

n= Number of compounding periods. 

Example: Given the nominal rate of 8%, compute the effective annual rates for annual, 

semiannual, quarterly, monthly, daily and continuous compounding. 

 

R code: 
> #For Annual 

> ear(0.0425, 1) 

[1] 0.0425 

> #For Semiannual 

> ear(0.0425, 2) 

[1] 0.04295156 

> #For Quarterly 
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> ear(0.0425, 4) 

[1] 0.04318215 

> #For Monthly  

> ear(0.0425, 12) 

[1] 0.04333772 

> #For Daily 

> ear(0.0425, 365) 

[1] 0.04341347 

> #For Continuous 

> ear.continuous(0.0425) 

[1] 0.04341606 

 

16.3 PRESENT VALUE  

 

Present Value: Present value (PV) is the current worth of a future sum of money or stream 

of cash flows given a specified rate of return.  

 

16.3.1 Present value of a single sum (pv.simple( ) function): 

 

Formula: 

𝑃𝑉 =  𝐹𝑉 / ((1 + 𝑟) n) 

 

PV = present value 

FV = future value required 

r = rate per period 

n = number of periods 

Example: Mr. X wants to save money such that at the end of 15 years he has 10000000 Rs. in his 

account. He gets 6% interest rate per year. How much amount should he put in the account now? 

 

R code: 
> # rate= 6% per annum, fv= 1000000, period= 15 years 

> pv.simple(r = 0.06, n = 15, fv = 1000000) 

[1] -417265.1 

 

16.3.2 Present value of an ordinary annuity (pv.annuity( ) function): 

 

In ordinary annuity, payment is made at the end of the period. 

Formula: 

𝑃𝑉(𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦) = 𝑃𝑀𝑇 (
(1 − (1 + 𝑟)−𝑛

𝑟
) 

 

PMT= payment per period 

r= rate per period 

n= Number of periods 
 

Example:  Calculate the PV of an annuity that pays 15000 per annum at the end of each of the 

next 15 years, given a 8% per annum discount rate? 
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R code: 
> #rate=8% per annum, payment per period= 15000, period= 15 years, type=0(as 

payment made at the end of the period) 

> pv.annuity(r = 0.08, n = 15, pmt = -15000, type = 0) 

[1] 128392.2 

 

16.3.3 Present value of an annuity due (pv.annuity( ) function): 

 

In annuity due, payment is made at the end of the period. 

 

Formula: 

𝑃𝑉(𝑎𝑛𝑛𝑢𝑖𝑡𝑦 𝑑𝑢𝑒) = 𝑃𝑀𝑇 (
(1 − (1 + 𝑟)−𝑛

𝑟
) (1 + 𝑟) 

PMT= payment per period 

r= rate per period 

n= Number of periods 

 

Example: Given a rate of interest 10% per annum, find the present value of 5-year annuity 

that makes payment of 2000Rs. at the beginning of every month starting today. 

 

R code: 
> #rate=10% per annum= .1/12 per month, paymnent per month= 2000, period= 5 

years= 60 months, type=1(as payment made at the beginning of the period) 

> pv.annuity(r = 0.1/12, n = 60, pmt = -2000, type = 1) 

[1] 94915.16 

 

16.3.4 Present value of a perpetuity (pv.perpetuity( ) function): 

 

Perpetuity is an infinite series of periodic payments of equal face value. 

 

Formula: 

𝑃𝑉(𝑝𝑒𝑟𝑝𝑒𝑡𝑢𝑖𝑡𝑦)
𝑃𝑀𝑇

𝑟
 

PMT= payment per period 

r= rate per period 

 

Example: Calculate the present value of the perpetuity paying 5000 Rs. at the end of every 

quarter. The yearly discount rate is 12%. 

 

R code: 
> #rate=12% per annum= .12/4 per qtr, paymnent per qtr= 2000,type=0(as 

payment is made at the end of theperiod) 

> pv.perpetuity(r = 0.12/4, pmt = -5000, type = 0) 

[1] 166666.7 
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16.3.5 Present value of uneven cash flow (pv.uneven( ) function): 

 

Formula: 

𝑃𝑉(𝑢𝑛𝑒𝑣𝑒𝑛 𝑐𝑓) = ∑
𝑐𝑓𝑖

(1 + 𝑟)𝑖

𝑛

𝑖=0

 

cfi= ith cash flow 

r= rate per period 

n= number of periods 

 

Example: Given rate of return 8% per annum, calculate the present value of the following 5-

year cash flow stream occurred at the end of each year: 

 

Year 1 2 3 4 5 

Cash Flow 10000 -6000 8000 -3000 -2000 

 

R code: 
> #rate=8% per annum, cash flow:10000, -6000, 8000, 3000, 2000 

> pv.uneven(r = 0.08, cf = c(10000, -6000, 8000, 3000, 2000)) 

[1] -14032.14 

 

16.4 FUTURE VALUE  

 

The future value (FV) is the value of a current asset at a specified date in the future based on 

an assumed rate of growth over time. 

 

16.4.1 Future value of a single sum (fv.simple( ) function): 

 

Formula: 

𝐹𝑉 =  𝑃𝑉 (1 + 𝑟) n 

 

PV = present value 

FV = future value required 

r = rate per period 

n = number of periods 

Example: Calculate the Future Value of an investment of 1000 Rs. at the end of five years if it 

earns an annually compounded rate of return of 7.2%. 

R code: 
> # rate= 7.2% per annum, pv= 1000, period= 5 years 

> fv.simple(r = 0.072, n = 5, pv = -1000) 

[1] -417265.1 
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16.4.2 Future value of an ordinary annuity (fv.annuity( ) function): 

 

Formula: 

𝐹𝑉(𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦) = 𝑃𝑀𝑇 (
((1 + 𝑟)𝑛 − 1)

𝑟
) 

PMT= payment per period 

r= rate per period 

n= Number of periods 
 

Example:  Calculate the Future Value of an ordinary annuity that pays 15000 per quarter at 

the end of each quarter for the next 10 years, Expected rate of return is 8% per year. 

 

R code: 
> # rate= 8% per annum= .8/4 per qtr, pv= 15000, period= 10 years= 40 qtrs, 

type=0(as payment made at the end of the period) 

> fv.annuity(r = 0.08/4, n = 40, pmt = -15000, type = 0) 

[1] 906029.7 

 

16.4.3 Future value of an annuity due (fv.annuity( ) function): 

 

Formula: 

𝐹𝑉(𝑎𝑛𝑛𝑢𝑖𝑡𝑦 𝑑𝑢𝑒) = 𝑃𝑀𝑇 (
((1 + 𝑟)𝑛 − 1)

𝑟
) (1 + 𝑟) 

 

PMT= payment per period 

r= rate per period 

n= Number of periods 

 

Example: Given a rate of interest 12% per annum, find the future value of an annuity that 

pays 1000Rs. at the beginning of every month starting today for the next 6 years. 

 

R code: 
> #rate=12% per annum= 0.01 per month, paymnent per month= 1000, period= 6 

years= 72 months, type=1(as payment made at the beginning of the period) 

> fv.annuity(r = 0.01, n = 72, pmt = -1000, type = 1) 

[1] 105757 

 

16.4.4 Future value of uneven cash flow (fv.uneven( ) function): 

 

Formula: 

𝐹𝑉(𝑢𝑛𝑒𝑣𝑒𝑛 𝑐𝑓) = ∑ 𝑐𝑓𝑖(1 + 𝑟)𝑖

𝑛

𝑖=0

 

cfi= ith cash flow 

r=rate per period 

n= number of periods 
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Example: Given rate of return 9% per annum, calculate the future value of the following 5-

year cash flow stream occurred at the end of each year: 

 

Year 1 2 3 4 5 

Cash Flow 10000 -6000 8000 -3000 -2000 

 

R code: 
> #rate=9% per annum, cash flow:10000, -6000, 8000, 3000, 2000 

> fv.uneven(r = 0.09, cf = c(10000, -6000, 8000, 3000, 2000)) 

[1] -21120.44  

 

16.5 Loan payment calculation (pmt( ) function) 

 

To find the amount per period 

  

Formula: 

𝑃𝑀𝑇 =
𝑟(𝑃𝑉)

1 − (1 + 𝑟)−𝑛
 

PMT= payment per period 

PV= present value 

r=rate per period 

n= number of periods 

 

Example: A person decides  to take a loan of 500000Rs. for 4 years. Bank lends the money at 

the rate of 6% per annum and requires that the loan should be paid off in the equal end-of-

month payments in 4 years. Calculate the amount the person has to pay at the end of every 

month to repay the loan. 

 

R code: 
> # rate= 6% per annum=.06/12 per month, fv= 500000, period= 4 years=48 months 

> pmt(r = 0.06/12, n = 48, pv = 500000, fv = 0) 

[1] -11742.51  

 

16.6 Number of periods of an annuity (n.period( ) function) 

 

Formula: 

𝑛 =
𝑙𝑛 (1 +

𝐹𝑉 × 𝑟 
𝑃𝑀𝑇 )

𝑙𝑛(1 + 𝑟)
 

 

PMT= payment per period 

FV= future value 

r=rate per period 

n= number of periods 
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Example: How many years one has to pay the yearly installment of 20000Rs. at the end of 

each year to get accumulated value as 1000000, if the rate per annum is 9%? 

 

R Code: 
> #rate=9%per annum, fv=1000000, payment at the end of every year=20000 

> n.period(r = 0.09, pv = 0, fv = 1000000, pmt = -20000, type = 0) 

[1] 19.78178 

 

 

16.7 Rate of return (discount.rate( ) function) 

 

Function discount.rate is used to calculate rate of return of the given investment. 

 

Example: Mr. Y want to invests 300Rs. at the end each month for the next 2 years. He gets 

500000 Rs. at the end of second year. Calculate annual rate of return of this investment. 

 

R code: 
> discount.rate(n = 24, fv = 50000, pmt = -300, pv = 0, type = 0)*12 

[1] 1.719706 

> #rate by the function given by the above function is per month. So to 

convert it to per year we multiply by 12 

 

16.8 Net Present Value (npv( ) function) 

 

Net Present Value (NPV) is the difference between the present value of cash inflows and the 

present value of cash outflows. 

 

Formula:  

𝑁𝑃𝑉 = −𝑐𝑓0 +
𝑐𝑓1

(1 + 𝑟)
+  

𝑐𝑓2

(1 + 𝑟)2
+ ⋯ +  

𝑐𝑓𝑛

(1 + 𝑟)𝑛
= ∑

𝑐𝑓𝑖

(1 + 𝑟)𝑖
−𝑐𝑓0

𝑛

𝑖=1

 

cfi= ith cash flow 

r=rate per period 

n= number of periods 

Example: Mr. Z does an investment with an initial cost of 600000 Rs. and positive cash flows 

of 300000 at the end of first year , 230000 Rs. at the end of second year, and 480000Rs. at 

the end of third year and 120000 Rs. at the end of fourth year. Calculate the net present value 

of this investment if the discount rate is 8.5%. 

R code: 
> #rate= 8.5%, cash flow: -600000, 300000, 230000, 480000, 120000 

> npv(r = 0.085, cf = c(-600000, 300000, 230000, 480000, 120000)) 

[1] 334257.2 

 



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 16 – Financial Functions 
 

 
ISBN 978-93-80788-71-5 146 

 

16.9 Internal Rate of Return (irr( ) function) 

 

Internal rate of return (IRR) is the interest rate at which the net present value of all the cash 

flows (both positive and negative) from a project or investment equal zero. 

 

Example: Consider the example given in Net Present Value calculation and calculate the 

internal rate of return for the investment mentioned there. 

 

R code: 
> #cash flow: -600000, 300000, 230000, 480000, 120000 

> irr(cf = c(-600000, 300000, 230000, 480000, 120000)) 

[1] 0.3278433 

 

16.10 References 

 
1. www.investopedia.com 

2. R for Beginners, Emmanuel Paradis 

3. Package ‘FinCal’, August 29, 2016. 
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Chapter 17 
 

Non-Parametric Test 
 

 

Dr. S. B. Muley, Assistant Professor, Department of Statistics,   

K. C. College, Churchgate, Mumbai – 400 020.  

 

 

17.1 Introduction 

 

Hypothesis testing is the key are of elementary statistics. Different statistical tests and their 

uses to test different types of hypothesis on the basis of different observed data points has 

always remained at the centre of discussion in the interdisciplinary fields. Statistician 

categorises the test as parametric and Non-parametric. Parametric methods in elementary 

statistics that assume the data is quantitative, the population has a normal distribution and 

the sample size is sufficiently large.   

 

On the contrary a statistical method is called non-parametric if it makes no assumption on 

the population distribution or sample size.  This approach is less powerful yet more frequent, 

more flexible, more robust, and applicable to non-quantitative data.  

 

 One sample tests: 

o Sign test 

o Wilcoxon Signed rank test 

 Two sample tests: 

o Independent sample test 

 Mann-Whitney U test 

o Paired sample test 

 Wilcoxon test: 

 More than two sample tests: 

o Independent sample test 

 Kruskal-Wallis Test: 

o Paired sample test: 

 Friedman Test: 

 

The packages used:  

 BSDA 
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17.2 One sample tests 

 

17.2.1 Sign test 

 

Appropriate data 

•  One-sample data. 

•  Data are ordinal, interval, or ratio. 

 

Description 

This function will test a hypothesis based on the sign test and reports linearly interpolated 

confidence intervals for one sample problems. 

 

Usage 
SIGN.test(x, y = NULL, md = 0, alternative = "two.sided", conf.level = 0.95) 

 

Arguments 

X numeric vector; NAs and Infs are allowed but will be removed. 

Y optional numeric vector; NAs and Infs are allowed but will be removed. 

Md a single number representing the value of the population median specified 

by the null hypothesis 

alternative is a character string, one of "greater", "less", or "two.sided", or the initial 

letter of each, indicating the specification of the alternative hypothesis. For 

one-sample tests, alternative refers to the true median of the parent 

population in relation to the hypothesized value of the median. 

conf.level confidence level for the returned confidence interval, restricted to lie 

between zero and one 

Statistic the S-statistic (the number of positive differences between the data and the 

hypothesized median), with names attribute “S”. 

 

Example 2: 

It is known from the past experience that the median length of Sunfish in a particular 

polluted lake was 3.9 inches. During the past two years the lake was cleaned up and the 

conjecture is made that now median length is greater than 3.9 inches. A random sample of 

10 sunfish selected from this lake showed lengths as 5.2, 4.1, 5.4, 5.7, 3.0, 6.3, 6.6, 2.8, 1.9, 4.5 

inches.  Will you reject the null hypothesis at 10 % level of significance (l.o.s.) on the basis of 

Sign Test? 

 

Manual Calculation: 

Ho : m = 3.9 

H1 : m > 3.9 (α = 0.10) 

Let T− be the number of sunfish with lengths < 3.9” 

 T− = 3 

Test statistic is T− 

Under Ho; T− ~ B ( n = 10, P = ½) 
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The C.R. is C ≡ { T−; T− ≤ C} where C is such that P (Type 1 error)  α 

P(T− ≤ C/P = ½)  0.10 

∑ (
10
𝑟

)𝐶
𝑟=0 (0.5)10  0.10 

For C = 2:  ∑ (
10
𝑟

)2
𝑟=0 (0.5)10 = 0.0547 

For C = 3:  ∑ (
10
𝑟

)3
𝑟=0 (0.5)10 = 0.1719 

 C = 2 

For given sample T− = 3 ≮ C = 2 

 Do not reject H0 at 10 % l.o.s. 

 

Note: Test statistics is based on min (No. of positive, No of negative) 

 

R-syntax: 

 
>data=c (5.2, 4.1, 5.4, 5.7, 3.0, 6.3, 6.6, 2.8, 1.9, 4.5) 

>SIGN.test (data, md=3.9, alternative="greater", conf.level=0.95) 

 

 
 

One Sample Sign-Test: 

         

> data=c (5.2, 4.1, 5.4, 5.7, 3.0, 6.3, 6.6, 2.8, 1.9, 4.5) 

> SIGN.test (data, md=3.9, alternative="greater", conf.level=0.90) 

 

One-sample Sign-Test 

data:  data  

s = 7, p-value = 0.1719 

alternative hypothesis: true median is greater than 3.9  

90 percent confidence interval: 

 3.43      Inf  

sample estimates:  median of x =   4.85  

 Conf.Level L.E.pt U.E.pt  

Lower Achieved CI 0.8281 4.1000 Inf  

Interpolated CI 0.9000 3.4253 Inf  

Upper Achieved CI 0.9453 3.0000 Inf  

> data=c (5.2, 4.1, 5.4, 5.7, 3.0, 6.3, 6.6, 2.8, 1.9, 4.5) 
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> SIGN.test (data, md=3.9, alternative="greater", conf.level=0.90) 

 

One-sample Sign-Test 

 

data:  data  

s = 7, p-value = 0.1719 

alternative hypothesis: true median is greater than 3.9  

90 percent confidence interval: 

 3.43      Inf  

sample estimates:  median of x =   4.85  

 Conf.Level L.E.pt U.E.pt  

Lower Achieved CI 0.8281 4.1000 Inf  

Interpolated CI 0.9000 3.4253 Inf  

Upper Achieved CI 0.9453 3.0000 Inf  

 

Note: S the test statistics is no. of positive in the data set. 

 

Interpretation: Since p-value =0.1719 > 0.05 indicates one should not reject null 

hypothesis. 

 

17.2.2 Wilcoxon Signed rank test: 

 

Performs one- and two-sample Wilcoxon tests on vectors of data; the latter is also known 

as ‘Mann-Whitney’ test. 

 

Usage 
wilcox.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), 

            mu = 0, paired = FALSE, exact = NULL, correct = TRUE, 

            conf.int = FALSE, conf.level = 0.95, ...) 

 

Arguments 

X numeric vector of data values. Non-finite (e.g. infinite or missing) values 

will be omitted. 

Y an optional numeric vector of data values: as with x non-finite values will be 

omitted. 

alternative a character string specifying the alternative hypothesis, must be one 

of "two.sided" (default), "greater" or "less". You can specify just the initial 

letter. 

Mu a number specifying an optional parameter used to form the null 

hypothesis. See ‘Details’. 

Paired a logical indicating whether you want a paired test. 

Exact a logical indicating whether an exact p-value should be computed. 

Correct a logical indicating whether to apply continuity correction in the normal 

approximation for the p-value. 

conf.int a logical indicating whether a confidence interval should be computed. 
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conf.level confidence level of the interval. 

Formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the 

data values and rhs a factor with two levels giving the corresponding 

groups. 

Data an optional matrix or data frame (or similar: see model.frame) containing 

the variables in the formula formula. By default the variables are taken 

from environment(formula). 

Subset an optional vector specifying a subset of observations to be used. 

na.action a function which indicates what should happen when the data contain NAs. 

Defaults to getOption("na.action"). 

... further arguments to be passed to or from methods. 

 

Example 3:  

A random sample of 10 infants showed the following pulse rates per minute: 

110,121,125,122,112,117,129,114,124,127.Assuming that the distribution of pulse rates is 

symmetric. Is there any evidence to suggest that the median pulse rate of infants is more 

than 120 beats per minute? Use Wilcoxon’s signed rank test at 5% l.o.s. 

 

Manual Calculation: 

H0 :M=120 H!  :M>120  , α =0.05  n = 10  

 

Xi Xi –M0 Signed ranks 

110 -10 -10 

121 1 1 

125 5 5 

122 2 2 

112 -8 -8 

117 -3 -3 

129 9 9 

114 -6 -6 

124 4 4 

127 7 7 

 

T+ = sum of ranks with +ve sign = 28 

T− = sum of ranks with   −ve sign = 27 

Test statistic is T− 

Reject H0 if  T−≤ d  where d is s.t.  P(type I error ) ≤ 0.05  

From table A-3 (Daniel) d =11  for n=10  and α =0.05 (one sided)  

Since 27 ≮  11   do not reject H0 

So median pulse rates of infants is 120 beats per min. 
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Solution using R-Programming: 

R-Windows showing the execution: 

 
 

R-Console output: 
> x = c(110,121,125,122,112,117,129,114,124,127) 

> wilcox.test(x, y=NULL, alternative='greater', mu=120, paired=FALSE, exact = 

NULL, correct =T, conf.level=0.95) 

        Wilcoxon signed rank test 

data:  x  

V = 28, p-value = 0.5 

alternative hypothesis: true location is greater than 120.  

 

Interpretation: Since p-value =0.1719 > 0.05 indicates one should not reject null 

hypothesis. 

 

17.3 Two sample tests 

 

17.3.1 Independent sample comparison: 

 

Mann–Whitney U test 

The two-sample Mann–Whitney U test compares values for two groups.  A significant result 

suggests that the values for the two groups are different.  It is equivalent to a two-sample 

Wilcoxon rank-sum test. 

 

The test is performed with the wilcox.test function. 

 

If the distributions of values of each group are similar in shape, but have outliers, then 

Mood’s median test is an appropriate alternative.  

 

Appropriate data 

 Two-sample data.  That is, one-way data with two groups only. 

 Dependent variable is ordinal, interval, or ratio. 

  Independent variable is a factor with two levels.  That is, two groups. 
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 Observations between groups are independent.  That is, not paired or repeated 

measures data. 

 In order to be a test of medians, the distributions of values for each group need to be 

of similar shape and spread; outliers affect the spread.  Otherwise the test is a test of 

distributions. 

 

Example 4:  

Following data represents failure times of certain type of light bulbs produced by two 

different manufacturers X and Y by testing 10 bulbs selected at random from each of the 

output. The data are (hundreds of hours used before failures) 

X 5.6 4.6 6.8 4.9 6.1 5.3 4.5 5.8 5.4 4.7 

Y 7.2 8.1 5.1 7.3 6.9 7.8 5.9 6.7 6.5 7.1 

Use Mann-Whitney-Wicoxon test at 5% l.o.s. to test H0 : Mx = My against H1: Mx<My (use 

normal approximation.) 

 

Manual Solution: 

H0 : Mx =My;    H1: Mx < My ,   α = 0.05 

m: no. of X observations=10, n : no.of Y observations=10. Arrange 20 observations in 

increasing order .Below each observation write X or Y depending on whether it comes from 

set I or set II. Give ranks to 20 observations. 

Sx =Sum of ranks of X observations =65 

U= Sx -   
𝑚(𝑚+1)

2
 = 10   ; E(U)=

𝑚𝑛

2
 =50  & V(U)=

𝑚𝑛(𝑚+𝑛+1)

12
 =175      Under H0  U~N(50,175) 

Zcal =
𝑈−𝐸(𝑈)+0.5

√𝑉(𝑈)
 =-2.9859 <  -1.645( =  -Zα)   So   reject H0 

 

Solution using R-Programming: 

R-Windows showing the execution: 
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R-Console output: 

         

> x=c(5.6,4.6,6.8,4.9,6.1,5.3,4.5,5.8,5.4,4.7) 

> y=c(7.2,8.1,5.1,7.3,6.9,7.8,5.9,6.7,6.5,7.1) 

> wilcox.test(x,y,paired=FALSE, alternative='less',exact = NULL, correct=T, 

conf.level=0.95) 

        Wilcoxon rank sum test 

data:  x and y  

W = 10, p-value = 0.0007523 

alternative hypothesis: true location shift is less than 0 

 

Interpretation: Since p-value =0.0007523 < 0.05 indicates one should reject null 

hypothesis. 

 

17.3.2 Paired Sample comparison: 

 

The two-sample rank-sum test for paired data is used to compare values for two groups 

where each observation in one group is paired with one observation in the other group.  The 

distribution of differences in the paired samples should be symmetric in shape. 

The test is performed with the wilcox.test function with the paired=TRUE option. 

 

Appropriate data 

•  Two-sample paired data.  That is, one-way data with two groups only, where the 

observations are paired between groups. 

•  Dependent variable is ordinal, interval, or ratio 

•  Independent variable is a factor with two levels.  That is, two groups 

•  The distribution of differences in paired samples is symmetric 

 

Example 5: 

Test scores of a group of  15 high – school  students before &after a training programme are 

as given below : 

Score before 63 75 78 84 58 58 70 76 74 88 74 94 99 79 93 

Score after 84 86 75 94 50 95 97 98 72 100 101 98 105 84 90 

 

Use appropriate statistical test at 1%l.o.s to check if the training has any effect on the test 

scores. 

 

Hypothesis: 

H0 : Mx =My 

H1: Mx < My ,   α = 0.01 

X:score before training  (Median of corresponding distribution is Mx) 

Y: score after training   (Median of corresponding distribution is My) 
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Solution using R-Programming: 

R-Windows showing the execution: 

 
 

R-Console output: 
> x=c(63,75,78,84,58,58,70,76,74,88,74,94,99,79,93) 

> y=c(84,86,75,94,50,95,97,98,72,100,101,98,105,84,90) 

> wilcox.test(x,y,paired=TRUE, alternative='less',exact = NULL,  correct=T, 

conf.level=0.99) 

        Wilcoxon signed rank test with continuity correction 

data:  x and y  

V = 13, p-value = 0.00412 

alternative hypothesis: true location shift is less than 0  

 

Warning message: 

In wilcox.test.default(x, y, paired = TRUE, alternative = "less",  : 

  cannot compute exact p-value with ties 

 

Interpretation: Since p-value =0.0007523 < 0.05 indicates one should reject null 

hypothesis. 

 

Interpretation: Since p-value =0.00412 < 0.01 indicates one should reject null hypothesis. 

 

17.4 More than two sample tests 

 

17.4.1 Three independent samples comparison: 

 

The Kruskal–Wallis test is a rank-based test that is similar to the Mann–Whitney U test, but 

can be applied to one-way data with more than two groups.   

The test is performed with the kruskal.test function. 
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Post-hoc tests 

The outcome of the Kruskal–Wallis test tells you if there are differences among the groups, 

but doesn’t tell you which groups are different from other groups.  To determine which 

groups are different from others, post-hoc testing can be conducted.  Probably the most 

common post-hoc test for the Kruskal–Wallis test is the Dunn test, here conducted with the 

dunnTest function in the FSA package.  An alternative to this is to conduct Mann–Whitney 

tests on each pair of groups.  This is accomplished with pairwise.wilcox.test function.  

 

Appropriate data 

 One-way data. 

 Dependent variable is ordinal, interval, or ratio. 

 Independent variable is a factor with two or more levels.  That is, two or more groups. 

 Observations between groups are independent.  That is, not paired or repeated 

measures data. 

 In order to be a test of medians, the distributions of values for each group need to be 

of similar shape and spread.  Otherwise the test is a test of distributions. 

 

Kruskal-Wallis Rank Sum Test 

 

Description 

Performs a Kruskal-Wallis rank sum test. 

 

Usage 
kruskal.test(x, ...) 

 
## Default S3 method: 

kruskal.test(x, g, ...) 

## S3 method for class 'formula' 

kruskal.test(formula, data, subset, na.action, ...) 

 

Arguments 

X a numeric vector of data values, or a list of numeric data vectors. Non-

numeric elements of a list will be coerced, with a warning. 

G a vector or factor object giving the group for the corresponding elements of x. 

Ignored with a warning if x is a list. 

formula a formula of the form response ~ group where response gives the data values 

and groupa vector or factor of the corresponding groups. 

data an optional matrix or data frame (or similar: see model.frame) containing the 

variables in the formula formula. By default the variables are taken 

from environment(formula). 

subset an optional vector specifying a subset of observations to be used. 

na.action a function which indicates what should happen when the data contain NAs. 

Defaults togetOption("na.action"). 

... further arguments to be passed to or from methods. 
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Details 
 

kruskal.test performs a Kruskal-Wallis rank sum test of the null that the location parameters 

of the distribution of x are the same in each group (sample). The alternative is that they differ 

in at least one. 

 

If x is a list, its elements are taken as the samples to be compared, and hence have to be 

numeric data vectors. In this case, g is ignored, and one can simply use kruskal.test(x) to 

perform the test. If the samples are not yet contained in a list, use kruskal.test(list(x, ...)). 

 

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the 

same length as xgiving the group for the corresponding elements of x. 

 

Value 

A list with class "htest" containing the following components: 

 

statistic the Kruskal-Wallis rank sum statistic. 
 

Example 6: 

Test if there exists a significance of difference between the scores of three groups 

when compared against each other for the following given data set. Use 5% l. o. s. Also 

use post-hoc test to find the exact significance. 

Group 1 Group 2 Group 3 

63 84 74 

75 86 76 

78 75 65 

84 94 84 

58 50 50 

58 95 85 

70 97 97 

76 98 88 

74 72 72 

88 100 90 

74 101 101 

94 98 98 

99 105 115 

79 84 94 

93 90 90 
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Enter the data in the following format: 

Group (g) Score (x) Group (g) Score (x) Group (g) Score (x) 

1 63 2 84 3 74 

1 75 2 86 3 76 

1 78 2 75 3 100 

1 84 2 94 3 84 

1 58 2 50 3 110 

1 58 2 95 3 85 

1 70 2 97 3 97 

1 76 2 98 3 88 

1 74 2 72 3 95 

1 88 2 100 3 90 

1 74 2 101 3 105 

1 94 2 98 3 98 

1 99 2 105 3 115 

1 79 2 84 3 94 

1 93 2 90 3 90 

 

R-Windows showing the execution: 

 
R-Console output: 
kruskal.test (Data$score,Data$grp) 

        Kruskal-Wallis rank sum test 

data:  Data$score and Data$grp  

Kruskal-Wallis chi-squared = 10.0436, df = 2, p-value = 0.006593 

 

Interpretation: Since p-value =0.006593 < 0.01 indicates one should reject null 

hypothesis and conclude that there exists significance of difference between the scores of 

three group at 1% l.o.s. To find exact significance of difference we used post-hoc test 

comparison.  

 

R-Console output: 
> pairwise.wilcox.test(Data$score,Data$grp) 

        Pairwise comparisons using Wilcoxon rank sum test  

data:  Data$score and Data$grp  
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  1          2      

2    0.0401       -      

3    0.0084     0.5748 

 

Interpretation: 

 

 p-value for the comparison of Group 1 against Group 2 is less than that of 0.05 

indicates significance of difference. 

 p-value for the comparison of Group 1 against Group 3 is less than that of 0.05 

indicates significance of difference. 

 p-value for the comparison of Group 3 against Group 2 is greater than that of 0.05 

indicates no significance of difference. 
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Chapter 18 
 

Multiple Regression: A Case Study 
 

 

Gourav Tiwari, Mohammed Saad Qadri, Misbahuddin Saba, Dr. Asha Jindal* 

Researcher, Star DBT Scheme, Dept. of Statistics, K.C. College, Mumbai - 20, INDIA. 

*Star - DBT Mentor & Associate Professor and Head, Dept. of Statistics, K.C. College, 

Mumbai, INDIA – 20. 

 

18.1 Data Description 

 

The data consists of 398 records characterizing various car types.  For each car type the 

following attributes are provided: the MPG value (mpg) measured for each car model in a 

test performed in 1982, the number of the engine cylinders (cyl), the cylinder displacement 

in cubic inches (displ), the engine power (power), the car weight in pounds (weight), a 

number of seconds required to accelerate to the speed of 100 miles per hour (accel), the 

car’s production year (year), the country of production (origin: USA, Europe, or Japan), and 

the name of the model (model).  

 

Objective: - To Identify which variables are influencing the miles per gallon (MPG i.e fuel 

consumption)  of a car. 

 

18.1.1 Data Dictionary 

 

NAME OF THE VARIABLE VARIABLE DESCRIPTION 

MPG Mileage per gallon 

Cylinders No. of cylinders in the car 

Displacement Displacement of the piston in cubic inches 

Horsepower Engine power 

Acceleration A number of seconds required to accelerate to the speed of 100 

miles per hour 

Weight Car’s weight in pounds 

Year Year of production of car 

Origin Place of production (for e.g. 1-North America, 

 2-Europe, 3-Asia) 

Name Name of the car 

 

 



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 18 – Multiple Regression: A Case Study 
 

 
ISBN 978-93-80788-71-5 161 

 

18.1.2 Data used for Analysis 

 

 
 

18.1.3 Summary of the Data 

 

 
Summary gives us the minimum value, 1st quartile, median, mean, 3rd quartile and maximum 

value of each variable in the data. 

 

18.1.4 Struture of the Data 

 

 
From the structure of the data we can observe that the data consist of 398 observations and 

9 variables. Also it tells us the type of the variable where MPG, cylinders, displacement, 

weight, acceleration, year and origin are numeric variables and horsepower and name are 

categorical variables. Also we can see that data for the variable horsepower consist of some 

missing values denoted by “?”, so before starting our analysis we have to convert the variable 

type of horsepower from factor to integer and impute the missing values. 

 

Conversion of the Variable Horsepower from Factor to Integer 

Conversion of the variable type of horsepower from factor to integer can be done in the 

following way 
data$horsepower<-as.numeric(as.character(data$horsepower)) 

class(data$horsepower) 

"numeric" 
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18.2 Imputation of the Missing Values 

 

The missing values can be imputed by the mean of the other known values. In the variable h

orsepower there are  6 missing values. 

Mean of known values=104.423 which can be approximately taken as 104. Hence replacing 

all the missing values  

(denoted by ‘?’) by 104 in the data. 

 

18.3 Bivariate Analysis and Visualization 

 

 
> corrplot(correlation) 

> data$origin<-as.factor(data$origin) 

 

 
Above schedule and graph show the correlation between the variables. We can observe tha

t cylinders, displacement, horsepower and weight are highly negatively correlated with MP

G whereas acceleration and year of production are quite positively correlated. Also we can 

see that cylinders, displacement, weight and horsepower are positively correlated whereas 

cylinders & acceleration are positively correlated which means that as we increase the num
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ber of cylinders , displacement of the piston, weight of the car, engine power also increases 

but results in the decrease in the acceleration of the car. 

 

Visualizing the effects of no. of cylinders on MPG of car. 
> p<-ggplot(data, aes(x=cylinders, y=MPG, fill=cylinders)) + geom_boxplot() 

> p 

 
Figure 1 

 

Correlation coefficient between MPG and no. of cylinders is  −0.77539 which implies there 

is negative correlation between the variables which we can see from the above boxplot. It 

also shows that for 4 cylinders the cars provides the maximum MPG. 

Now lets see the change in the MPG of the cars over the years, 

 
Table 1 

 

Here we can see that over the years there has been increase in the average MPG of the car. 

This increase in the MPG of the cars can be the effect of positive changes in other variables. 

 

a) Summarization of horsepower over the years: 

 
Table 2 

 

From the correlation matrix we can see that horsepower and MPG are highly negatively 

correlated. And over the years there has been production of the cars with less horsepower 

which might be a possible reason for the increment in the MPG of the cars. 
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b) Summarization of  acceleration over years: 

 
Table 3 

From correlation matrix we can see that there is slight positive correlation between 

acceleration and MPG of the cars. And over the years there has been production of the cars 

which provides better acceleration and hence contributing to the rise in the average MPG of 

the cars. 

 

c) Summarization of weight of the car over the years: 

 
Table 4 

 

From the correlation matrix we can see that there is negative correlation between weight 

and MPG of the cars. And over the years there has been production of the cars with lesser 

weight and hence contributing to the rise in the MPG of the cars. 

 

18.4 Predictive Modelling 

 

Multiple Regression 

It is a statistical tool that allows you to examine how multiple independent variables are 

related to a dependent variable. Once we have identified how these multiple variables relate 

to your dependent variable, we can take information about all of the independent variables 

and use it to make much more powerful and accurate predictions about why things are the 

way they are. This latter process is called “Multiple Regression”. 

A population model for a multiple linear regression model that relates a y-variable to p -1 x-

variables is written as 

 

Yi =β0 + β1xi1 + β2xi2 +…+ βp−1xi(p−1) + ϵi. 

 

Dependent Variable for Modelling 

In our given data MPG (Mileage per gallon) is the dependent variable i.e. Y=MPG 

 

Independent Variable 

In our data independent variables are 

1. Cylinders 

2. Displacement 

3. Weight 

4. Horsepower 

5. Acceleration 

6. Year of production 

7. Origin 
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Hypothesis 

We test, 

H0: β1= β2= β3=…….= βp=0 i.e. there is no linear regression between our dependent and 

independent variable 

VS 

H1: βi≠0, i=1,2,3…p, i.e. There is a linear regression between our dependent and 

independent variable  

 

Model Building 

Multiple linear regression model  between our dependent and independent variables is  

Y(MPG) = β 0+ β 1*(cylinders) + β2*( weight) + β3*( displacement )+ β4*( horsepower )+ β 

5*(acceleration) + β6*( year) 

 + β 7*( origin) 

 

Summary of the model 

 
 

18.4.1 ASSUMPTIONS VALIDATION 

 
a) Multicollinearity 

 
Multicollinearity exists when two or more of the predictors(independent variables) in a 
regression model are moderately or highly correlated. Unfortunately, when it exists, it can 
wreak havoc on our analysis and thereby limit the research conclusions we can draw.  
 
 Multicollinearity Detection 

  

Multicollinearity may be checked multiple ways: 

 

 Correlation matrix – When computing a matrix of Pearson’s bivariate correlations 

among all independent variables, the magnitude of the correlation coefficients should be less 

than .80. 
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 Variance Inflation Factor (VIF) – The VIFs of the linear regression indicate the degree 

that the variances in the regression estimates are increased due to multicollinearity. 

VIF values higher than 5 indicate that multicollinearity is a problem. There is also one 

more term called GVIF (Generalized Variance Inflation Factor) which comes into the 

play for factors and polynomial variables. Variables which require more than 1 

coefficient and thus more than 1 degree of freedom are typically evaluated using the 

GVIF. For one-coefficient terms VIF equals GVIF.  

 

 Remedies for Multicollinearity 

 Drop one of the independent variable which is explained by others 

 Use Principal Component Regression in case of severe multicollinearity 

 Use Ridge Regression 

  

In our data we check the multicollinearity by using GVIF. Consider the model, 

MPG(Y) = β0 + β1*(cylinders) + β2*(displacement) + β3*(horsepower ) + β4*(weight) + β 5 

*(acceleration) +       β6*(year)+β7*(origin) 

 

 
 

Since the GVIF of the displacement is highest and exceeds 5 we will drop this variable and r

ebuild the  model excluding Displacement 

MPG(Y) = β0 + β1*(cylinders) + β2*(horsepower ) + β3*(weight) + β 4*(acceleration) + β5 

*(year)+ β6*(origin) 

 

 
 

Since the GVIF of the weight is highest and exceeds 5 we will drop this variable and rebuild 

the model excluding weight 

MPG(Y) = β0 + β1*(cylinders) + β2*(horsepower) + β3*(acceleration) + β4 *(year)+ 

β5*(origin) 
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Since the GVIF of horsepower is highest and exceeds 5 we will drop this variable and 

rebuild the model excluding horsepower 

MPG(Y) = β0 + β1*(cylinders) + β2*(acceleration) + β3*(year)+ β4*(origin) 

 

 
Here we can see that the GVIF of the remaining variables are smaller than 5. Hence we say 

that the model created using these variables is the best model and the problem of 

multicollinearity is resolved. 

 

Diagnostic Plots 
> par(mfrow=c(2,2)) 

> plot(reg4) 

  
Figure 2 
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b) Homoscedasticity 

The assumption of homoscedasticity (meaning “same variance”) is central to linear 

regression models.  Homoscedasticity describes a situation in which the error term (that is, 

the “noise” or random disturbance in the relationship between the independent variables 

and the dependent variable) is the same across all values of the independent variables 

 

 Detection of homoscedasticity 

Homoscedasticity can be tested statistically by Breush-Pagan test. 

Consider the hypothesis, 

 H0: The variance of the residuals is constant.  

v/s 

H1: The variance of the residuals is not constant. 

 

Breush Pagan Test, 

 
This test have a p-value=5.928*10-9 less than a significance level of 0.05, therefore we reject 

the null hypothesis that the variance of the residuals is constant and infer that the 

assumption of homoscedasticity is not satisfied.  

 

Alternatively, we can also detect homoscedasticity using the diagnostic plots. The plots we 

are interested in are at the top-left and bottom-left. The top-left is the chart of residuals vs 

fitted values, while in the bottom-left one, it is standardised residuals on Y axis. If there is 

exist homoscedasticity, you should see a completely random, equal distribution of points 

throughout the range of X axis and a flat red line. But in our case, as you can notice from the 

top-left plot, the red line is slightly curved and the residuals seem to increase as the fitted Y 

values increase. So, the inference here is, homoscedasticity does not exists. 

 

 Remedial Measures 

The heteroscedasticity (absence of homoscedasticity) can be fixed by transforming the 

variables. Log transformation is one of the transformations that can be used. In our case we 

take log of our dependent variable i.e. log(MPG) and rebuild the model 

 

Y[log(MPG)]=β0 + β1*(cylinders) + β2*(acceleration) + β3*(year) + β4*(origin) 

 

Summary 
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Looking at the above  summary, 

Coefficient of variable cylinder (β1) = -0.123461, this implies that if we increase the number 

of cylinders by 1 unit  the MPG of the car decreases 12.35% by  units. 

 

Coefficient of acceleration (β2) = 0.0002592, this implies that if we increase the acceleration 

by 1 unit the MPG of the car also increases  0.02592% by  units. 

 

Coefficient of year (β3) = 0.0307584, this implies that if we increase the year by 1 unit the 

MPG of the car also increases by  3.07584 units. Which is quite obvious along with time there 

have been advancements in technologies which helped in better production of cars in terms 

of MPG. 

 

Adjusted R2 =0.7888 =78.88% of the variance in the values of log(MPG) is explained by the 

model  

 

VIF of the new model 

 
Since the GVIF of all the variables are less than 5 we can conclude that multicollinearity 

does not exist. 

 

Now lets check for homoscedasticity using Breush-Pagan test.  
 

 
 

Since p-value is greater  than 0.05 we accept H0 and conclude that the residual terms have 

same variance. Also we look at the diagnostic plots of this model to check the 

homoscedasticity 
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Diagnostic Plots for testing Homoscedasticity and Multicollinearity 
 
> par(mfrow=c(2,2)) 

> plot(reg5) 

 

 
Figure 3 

 

c) Normality of residuals 

 
The residual terms are assumed to be normally distributed. This assumption can be checked 

by plotting Normal Q-Q graph. In Figure 2 Normal Q-Q plot is shown where the values of the 

residual are along the diagonal line which means that they are normally distributed. Hence 

this assumption is also satisfied. 

 

d) Linearity between response and predictors 

 
This assumption says that the response variable (dependent variable) and predictors 

(independent variables) needs to have linear relationship. This assumption can be checked 

by plotting fitted values VS residual graph. In figure 2 the red line is almost straight and 

hence we say that the variables are fairly linearly correlated. 
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18.5 Conclusions 

 
1. From the summary of the final model we can see that the cylinders, year of production 

and origin (place of production) are the significantly influencing MPG of the car. 

2. From bivariate analysis we can see that over the years there has been increment in MPG 

of the cars which is the collective effect of, 

 Decrement in  horsepower . 

 Decrement in the weight of the car. 

 Rise in the acceleration. 

 

18.6 Recommendations 

 
1. From the figure 1 we can say that 4 is the optimum number of cylinders leading to 

enhancement in MPG of the cars. 

2. Minimizing the weight and horsepower of the car can effectively increase the MPG 

of the car. 

 

 



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 19 – Logistics Regression: Human Resources Analytics 
 

 
ISBN 978-93-80788-71-5 172 

 

Chapter 19 
  

Logistics Regression:  
Human Resources Analytics 

Why do our employees leave prematurely? 
 

 
Pravesh .S. Tiwari1, Divya .M. Poojari2 

1Data Analyst in Accenture; 2Statistical Programmer in Cognizant 

 

 

19.1 Introduction 

 

Employee attrition is one of the biggest challenges that the companies face. 

 

There are several factors that lead to attrition. While it may not be easy to control all the 

factors, it may not be worthwhile to look into those factors that seem controllable. Factors 

such as average number of hours spend per month by the employees, salary, promotions, job 

rotation, number of projects are a few which are easier to manage. 

 

If we are able to extract cut-off levels for some of the above mentioned factors through our 

analysis, then we should be able to have a better understanding about the factors that are 

responsible for the employees leaving the company prematurely. 

 

19.2 Role of analytics in Human Resources 

 

In today’s competitive world talented people are the most worthwhile treasure for the 

company and at the same time burdensome to hold down such valuable resources in 

organization. During last year’s, large investments were put into tools and information 

systems to manage performance, hiring, compliance and employees’ development in order 

to enhance its capabilities. 

 

Using data produced by these tools and systems typically implemented into enterprise HR 

departments, most companies are able to provide reports at least at some basic level. They 

are usually able to go through data from several previous periods to assess positive or 

negative trends, or to create benchmarks comparing their performance against their 

competitors across time and regions. However, in order to bring real value and help driving 

the business competitiveness, HR analytics utilization needs to go far beyond.  
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The biggest struggles in achieving better utilization of data resources and information 

systems are inefficient use of the data, asking wrong questions and lack of analytical ability 

in HR environment in general. HR departments are in need for analytically capable people 

enabled to provide right insights combining reporting skills and domain knowledge. 

 

19.2.1 Problem Statement 

 

 The goal of the case study is to find out which are the most influential factors 

leading to employees renege. 

 Which employee will leave next? 

 

19.2.2 Methodology 

 

 Visualization: - The first step is to visualize and perform univariate analysis to 

explore data to find useful insights. 

 Model: - Next step is to model the data in order to confirm or reject our hypothesis 

that certain variables are significant in determining employee departures. 

 Actionable Insights: - The final step is to review and build onto our analysis by 

drawing new insights or further enhancing existing insights. 

 

19.2.3 Data Dictionary 
 

Variable Name Variable Definition 

Satisfaction Level Level of satisfaction (0-1) 

Last evaluation Time since last performance evaluation (in Years) 

Projects Number of projects completed while at work 

Average monthly hours Average monthly hours at workplace 

Time spent at company Number of years spent in the company 

Accident Whether the employee had a workplace accident 

Promotion Last 5 yrs Whether the employee was promoted in the last five years(1 = 

promoted, 0 = Not Promoted) 

Positions Type of Job Position 

Salary Salary level (1= low, 2= medium, 3= high) 

Left Whether the employee has left (0= remains employed, 1= left) 
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19.2.4 Structure of the data 

 

 
 

From the structure of the data we can see that sample size of the data is 14999 and there 

are 10 variables and also whether a variable is categorical or continuous where num 

indicates numeric or continuous and Factor indicates categorical. 

 

19.3 Data Analysis 

 
19.3.1 Data used for Analysis 

 
 

19.3.2 Univariate Analysis and Visualization 

 
a) Correlation Matrix 

 
 

b) For Employees who left the organization 

Average monthly time spent by employees for status of promotion in last 5 years 

  
Average last evaluation score for by employees for status of promotion in last 5 years 
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Average number of projects done by employees for status of promotion in last 5 years 

 
From the above correlation  matrix we can see that last_evaluation, number_of_projects, and 

average_monthly_hours are quite correlated with each other. Which means number of 

projects and time spent on these projects influence the last evaluation score, also from the 

remaining three tables we can see that for employees who left numbers of projects and 

average monthly hours spent to do them are more for those who are not  promoted than who 

are promoted in last 5 years and also last evaluation score is more for not promoted 

employees, which indicates more workload with less financial growth. 

 

 
Figure 1 

 

 
Figure 2 
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Figure 3 

 

From the Figure 1 we can see that maximum numbers of attritions are from sales, support 

and technical department and Figure 2 show that sales, support and technical departments 

employees falls in low range salary. So we can conclude that low salary could be a possible 

reason for the renege for employees. From figure 3 we can observe that attrition rate is high 

for  2.5 to 5 years experienced people in a company, Not getting proper hike in last 5 years 

could be a possible reason for this. 

 

19.4 Predictive Modelling 

 
19.4.1 Logistic Regression 

 

Logistic Regression is a classification algorithm. It is used to predict a binary outcome (1 / 0, 

Yes / No, True / False) given a set of independent variables. In simple words, it predicts the 

probability of occurrence of an event by fitting data to a logit function. Logistic regression is 

used to describe data and to explain the relationship between one dependent binary variable 

and one or more nominal, ordinal, interval or ratio-level independent variables. 

 

The logistic regression model 

ln[p/(1-p)] = a + BX + e or 

[p/(1-p)] = exp(a + BX + e) 

where: 

ln is the natural logarithm, logexp, where exp=2.71828… 

p is the probability that the event Y occurs, p(Y=1) 

p/(1-p) is the "odds ratio" 

ln[p/(1-p)] is the log odds ratio, or "logit" 

all other components of the model are the same. 

 

The logistic regression model is simply a non-linear transformation of the linear regression. 

The "logistic" distribution is an S-shaped distribution function which is similar to the 

standard-normal distribution (which results in a probit regression model) but easier to work 
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with in most applications (the probabilities are easier to calculate). The logit distribution 

constrains the estimated probabilities to lie between 0 and 1. 

For instance, the estimated probability is: 

 

p = 1/[1 + exp(-a - BX)] 

With this functional form: 

if you let a + BX =0, then p = .50 

as a + BX gets really big, p approaches 1 

as a + BX gets really small, p approaches 0. 

 

19.4.2 Data splitting 

 

Separating data into training and testing sets is an important part of evaluating data mining 

models. Typically, when you separate a data set into a training set and testing set, most of 

the data is used for training, and a smaller portion of the data is used for testing. Analysis 

Services randomly samples the data to help ensure that the testing and training sets are 

similar. By using similar data for training and testing, you can minimize the effects of data 

discrepancies and better understand the characteristics of the model. 

 

After a model has been processed by using the training set, you test the model by making 

predictions against the test set. Because the data in the testing set already contains known 

values for the attribute that you want to predict, it is easy to determine whether the model's 

guesses are correct. 
 

19.4.2 Dependent Variable for Modeling: 

 

Left (whether employee has left the organisation or not) 

Independent Variables: 

last_evaluation number_project 

average_montly_hours time_spend_company 

Work_accident promotion_last_5years 

Sales 

 

Salary 

 

19.5 Model Building and Output Interpretation 

 

Step 1: Create a logistic model using glm() function  in R 

 
 

Step 2:  Global testing 

 

H0: b1 = b2 = … = bk = 0 OR (Ho: None of the variables has significant impact) 

v/s    
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H1: At least one coefficient is not zero 

Test Statistic: 

 χ2 = L1 – L2 which follows Chi-square distribution with k df. 

L1 = –2 log L with only constant term L2 = –2 log L with k variables and constant term 

Reject H0 for large value of  χ2 or Reject H0 if p value < 0.05 

 
 

19.6 Interpretation: 

 

Since P-Value is less than 0.05 we reject Ho and conclude that atleast one coefficient is not 

zero or atleast one variable is making impact on dependent variable. 

 

Step 3:  Interpreting model Summary 

 

 
 

From the above output we can see that  last_evaluation, average_monthly_hours, 

_work_accident, promotion in last 5 years, salary,  are the most  significant variables also for 

sales category salesmanagement and salesRandD are significant categories. 

 

Step 4: Variable importance 

 

From the logistic model we identified significant variables but it is important to find out 

order  of importance below table shows order of significance for each variable 
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Step 5: Measuring accuracy of the model 

 

 
 

Area inside the curve which indicates accuracy of the model is 72.63% 

 

19.7 Conclusion 

 
 From the Univariate analysis and Visualization we can conclude that  although 

employees are contributing in more projects and spending long hours to complete 

these project also evaluation score is high despite of that they are not getting 

promotion and financial growth. 

 Payscale of Sales, Support and Technology department  is low which could be a reason 

for higher attrition rate in these three departments 

 From Variable Importance plot we can see that Time spend in a company, Work 

accidents and salary are the three top most influencing factors for attrition of 

employees 
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Chapter 20 
 

Factor Analysis 
 

 

Dr. Santosh P. Gite, Associate Professor and Head, Department of Statistics,  

University of Mumbai, Mumbai. 

 

 

20.1 Introduction 

 

Factor analysis is normally used to understand the correlation structure of collected data 

and identify the most important factors contributing to the data structure. In factor analysis, 

the relationship among a number of observed quantitative variables are represented in 

terms of a few underlying, independent variables called factors, which may not be directly 

measurable.   

 

Factor analysis is related to principal components, but the two methods have different goals. 

Principal components seeks to identify orthogonal linear combination of the variables, to be 

used either for descriptive purposes or to substitute a smaller number of uncorrelated 

components for the original variables. In contrast, factor analysis represents a model for the 

data, and as such is more elaborate. 

 

The factor  model hypothesizes that the response vector X1, X2,…,Xm can be modeled as linear 

combinations of a smaller set of k unobserved (latent) random variables F1 , F2 ,…,Fk, called 

common factors, along with an error term e1, e2,…,em. 

 

The factor analysis model is  

                           X - µ = L F + e 

 

Where, X - µ  is the response vector, centered by the mean vector, L is the m x k matrix   of 

factor loadings, F is k x 1 vector of unobservable common factors and e is m x 1 error vector. 

The factor analysis model is differs from other models, such as the linear regression model , 

in that independent variables  F1 , F2 ,…,Fk are unobservable. Because of so many terms are 

unobserved , further assumption must be made before may uncover the factors from the 

observed response alone. 

 

These assumptions are that E(F) = 0, Cov(F) = I , E(e) = 0 and Cov(e) is diagonal matrix. 

Some terms which is useful in factor analysis such as communality, factor loadings, specific 

variance. 
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1) Factor loadings: factor ladings represents the correlation between the ith variable 

and the jth factor . 

2) Communality: Communality represents the proportion of variance of a particular 

variable that is shared with other variable. The communalities  represents the overall 

importance of each of the variable in the factor analysis as whole. Communality values 

are calculated as the sum of squared factor weights for a variable. Communalities less 

than 0.5 can be considered to be too small , since this would maean that the variable 

shares less than half of its variability in common with the other variable. 

3) Specific variance:  The proportion of variance of particular variance due to the 

specific factor is often called as specific variance.  

        

20.2 Checking for Adequacy of the Data. 

 

Before go to the perform factor analysis, the adequacy of the data is evaluated on the basis 

of the results of a Kaiser-Meyer-Olkin (KMO) sampling adequacy test and bartlett’s test of 

sphericity. The initial step is the determination of adequacy of the data for being use for 

factor analysis. 

 
20.2.1 Kaiser-Meyer Olkin (KMO) measures 

 

The proportion of variability within the standardized variables which is shared in common, 

and therefore caused by underlying factors, is measured by Kaiser-Meyer-Olkin measure of 

sampling adequacy. Values of the KMO statistics less than 0.5 indicate that the correlation 

between pairs of variable cannot be explained by the other variables and that factor analysis 

may not be appropriate. 

 
20.2.2 Bartlett’s test of sphericity 

Bartlett’s test for sphericity tests the null hypothesis that the correlation matrix is an identity 

matrix. Small p-value indicate that evidence against the null hypothesis(i.e. the variables 

really are correlated). For pvalues much larger than 0.05 indicated that there is insufficient 

evidence that variables are not correlated, so far factor analysis may not be suitable. 

 

If KMO value is greater than 0.5 and Bartllet’s  test is significant then go for the factor 

analysis. 

 

The second step is the estimation of the eigenvalues and factor loadings. Small eigenvalues 

contribute little to the explanatory capability of the data, only the first few factors are require 

to account for much of the parameter variability. Following methods are often using to 

extract important factors. 

 

How many factors should be extract? 

The criteria used for deciding how many factors to extract are 1) eigenvalue criterion 2) 

screeplot criterion. 
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a) Eigenvalue criterion 

 

The sum of the eigenvalue represents the number of variables entered into the PCA. An 

eigenvalue of 1 would then mean that the component would explain about “one variables 

worth” of the variability. The rationale for using eigenvalue criterion is that each factor 

should explain at least one variables worth of the variability, and therefore eigenvalue 

criterion states that only factors with eigenvalue grater than 1 should be retained. 

 

b) Scree Plot criterion 

 

A scree plot is a graphical plot of the eigenvalue against the factor number. Scree plots are 

helpful for finding an upper bound (maximum) for the number of factors that should be 

retained. To determine the appropriate number of factors to be retained, one looks for an 

elbow (bend) in the scree plot. The number of factors to be retained is taken to be the point 

at which the elbow is found.  

 

In factor analysis factor loadings and specific variances are unknown parameters. To 

estimate these parameters, we use two of the methods of parameter estimation, the Principal 

Component method and the Maximum Likelihood Method. The solution obtained from these 

methods can be rotated in order to simplify the interpretation of factors. Here we are using 

principal component method to estimate factor loadings and specific variances. 

 

20.3 Factor rotation methods 

 

To assist in the interpretation of the factors, the factor rotation may be performed. Factor 

rotation corresponds to a transformation of the coordinate axes, leading to different set of 

factor loadings.   

 

20.3.1 Varimax rotation 

 
Varimax rotation prefers to simplify the column of the factor loadings matrix. Variamx 
rotation maximazes the variability in the laodings for the factors. The rationale for varimax 
rotation is that we can best interpret the factors when they are strongly associated with 
some variable and strongly not associated with other variables. 
 

20.3.2 Quartimax Rotation:  

 

Quartimax rotation seeks to simplify the rows of a matrix of a factor loadings. Quartimax 

rotation tends to rotate the axes so that the variables have high ladings for the first factor 

and low loadings thereafter. The difficulty is that it can generate a strong “ genral “ first 

factor, in which almost every variable has high ladings. 

 

 



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 20 – Factor Analysis 
 

 
ISBN 978-93-80788-71-5 184 

 

20.3.3 Equimax rotation 

 
Equimax rotation seeks to compromise between simplifying the columns and rows. 
 
20.3.4 Oblique Rotation 

 
Oblique rotation method available in which the factors may be correlated with each other. 
In this study , factor extraction is performed by using the method of principal component for  
factoring. The widely accepted method for deciding the number of factors to use, is 
eigenvalue criterion( Kaiser Criterion), which retains only those factors with eigenvalues > 
1. Factor loadings will be used to measure the correlation between variables and factors. 
Factor rotation also used to facilitate interpretation by providing simple factor structure. In 
this study we have used varimax rotation ( Orthogonal ) to interpret factors. 

 

20.4 Applying Factor Analysis to the Online shopping data set: 

 

513 sample size data and 16 variables were collected to study the factors that influences the 

customer to prefer online shopping. Following 16 variables were measured on 5 point likert 

type scale( Strongly agree, Agree, Indifferent, Disagree, Strongly disagree). 

 

X1:  Comparison of prices on various sites. 

X2:  Wide variety of brand choices. 

X3:  Getting latest product or product information. 

X4:   24 hour accessibility 

X5:  No access to shop. 

X6:   Description of the product. 

X7:  E-Shopping is secure. 

X8:  Free shipping. 

X9 : Easy payback 

X10 : Convenience  in time . 

X11: Convenience in place. 

X12: Low prices. 

X13: Offers and discounts. 

X14 : Cash on delivery. 

X15 : Discreet shopping(privacy) 

X16:  Sufficient return time. 

 

We have used R software to perform factor analysis on online shopping data to identify the 

factors that influences the customer to prefer online shopping. We are using “psych” package 

for factor analysis .  

 
> Install.packages(“psych”) 

> Library(psych) 
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After installation of the “psych” package, import data from file sources to perform factor 

analysis. Use following command to import .csv  data file. 

 
> Online = read.csv(file.choose( ), header=TRUE) 

 

Perform KMO test for adequacy of the data. To perform these test use following R code. 
> KMO(online) 
## Kaiser-Meyer-Olkin factor adequacy 

## Call: KMO(r = online) 

## Overall MSA =  0.79 

## MSA for each item =  

Price Variety Product Accesibility Noacess 

0.84 0.80 0.83 0.78 0.85 

Product.1 Secure Shiping Payback Convinencetime 

0.82 0.84 0.83 0.83 0.60 

Convinenceplace Lowprices discounts COD discreteshoping 

0.62 0.78 0.77 0.82 0.84 

returntime     

0.84     

 

The KMO function in the psych package produces an overall measure of sampling adequacy 

and MSA for each item. 

 

The overall KMO for data is 0.79 , which is acceptable and this suggest that data is 

appropriate for factor analysis. i.e. variables and sample size are enough to proceed for factor 

analysis. 

 

Bartlett’s test for sphericity tests the null hypothesis that the correlation matrix is an identity 

matrix. To perform Bartlett’s test for sphericity use following R code. 

 
> cortest.bartlett(online) 
## R was not square, finding R from data 

## $chisq 

## [1] 1821.756 

## $p.value 

## [1] 8.051493e-302 

## $df 

## [1] 120 

 

Bartlett test is statistically significant, suggesting that correlation matrix is different from 
identity matrix. There is enough correlation between variable to proceed for factor 
analysis. 
 
To demining the number of factors to extract, we use eigenvalue criterion and scree plot to 
extract important factors. Use the following R code. 
scree(online) 
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Eigen values are a measure of the amount of variance accounted for by a factor. In the above 

graph,   eigenvalue criterion states that only factors with eigenvalue grater than 1 should be 

retained. Therefore 5 factors are retained for factor analysis.  

 

To perform factor analysis with 5 factor model and examine the variables that have high 

ladings on the factors. After examine high loadings, try to think what construct is common to 

these variable. After that construct, give name to the factors.  

 
> fact.1=principal(online, nfactors=5, rotate="varimax") 
colnames(fact.1$loadings)=c("Product  Information", "Monetary benefits",  
+"convenience",  "variety of services",   "Comfort") 
> print(loadings(fact.1), digits=2, cutoff=0.35,  sort=TRUE) 

 Product 

Information 

Monetary 

benefits 

Convenience  variety of 

services    

Comfort 

Price 0.52     

Variety 0.71     

Product 0.64     

Accesibility 0.72     

Lowprices  0.74    

discounts  0.80    

COD   0.62   

discreteshoping   0.74   

returntime   0.67   

Noacess    0.58  

Product.1    0.70  

Secure    0.63  

Convinencetime     0.89 

Convinenceplace     0.89 

Shiping  0.40    

Payback    0.42  
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It seems that there 5 factors. The first factor is something that is common to Accessibility, 

Variety, Product & price. It seems like a good name for this factor is                       “  Product 

Information” . The other four factors might be named “Monetary benefits”,             “ 

Convenience”,  “ Variety of services” and “ Comfort”. 

 

Quick way to visualize your rotated factor solution. Use the following R code. 
> fa.diagram(online)  

Factor Analysis 

 
 

20.5 Conclusion 

 
Five ( Product Information, Monetary benefits, convinence, variety of services and 
comfort) key factors are may be influencing to customer prefer online shopping. 
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Product manufacturing industries should look at the five factors to attract more consumers 
towards the online shopping.   
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21.1 Introduction 

 

The aim of this chapter is to study real time tweets about trending topic #narendramodi. In 

this paper an attempt is made to classify tweets as positive or negative using a model. This 

information will be useful in gathering information about the general public response 

related to honourable PM Narendra Modi’s political career and his work till date.  

 

As we are a follower of Modi and he has millions of followers on Twitter, we thought of doing 

‘Sentiment Analysis’ on #NARENDRAMODI keyword. This is interesting as Narendra Modi 

(often called as Modi) is the current Prime Minister of India and he is very active on social 

media. But India is a democratic country and everyone has right to speak so let’s see how 

people are reacting to Modi. 

 

a) About Twitter  

 
 It is a social networking and micro blogging service. 

 Enables users to send and read messages. 

 Messages of length of up to 140 characters known as “tweets”. 

 Tweet contains rich information about people’s preferences. 

 People  share  their thoughts about political events  using twitter  

 

Data analysis on twitter data to predict the success of any event. 

Social media and web plays a significant role in sentiments analysis. 

 

b) What is Tweezer? 

 

TWEEZER= Tweets + Analyser 

This product (Tweezers) introduces a novel approach for automatically classifying the 

sentiment of twitter messages. These messages are classified as positive, negative or neutral 

with respect to query term or the keyword entered by a user. 
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c) What is Sentiment Analysis? 

 

 Sentiment analysis refers to the use of natural language processing (NLP), text 

analysis to identify and extract subjective information from the source material. 

 The main objective is to extract expressed opinions, emotions and sentiments in text. 

 It allows us to track attitude and feelings, reviews, tweets of the products. 

 Feedbacks of newly launched products. 

 Sentiments or acceptance of an event (like-demonetization, movies reviews etc.) 

 

d) Purpose 
 

It allows individuals to get an opinion on P. M. Narendra Modi on a global scale. 

 

e) Objective 

 
 Our main objective is to do a real time analysis on twitter sentiments using R. 

 Use the statistics of the tweets 'labels to predict people's sentiment towards 

#narendramodi. 

 Predicting the people’s present opinions and views on #narendramodi. 

 

21.2 How to Perform Sentiment Analysis? 

 
 Step 1 

 Go to https://apps.twitter.com/ 

 Create a new Twitter app 

 Enter your desired Application Name, Description and your website address making 

sure to enter the full address including the http://. You can leave the call back URL 

empty. 
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After registering, create an access token and grab your application’s Consumer Key, 

Consumer Secret, Access token and Access token secret from Keys and Access Tokens tab. 

 

 
 

In this article, sentiment analysis is performed using ‘#narendramodi’ with 3000 tweets. 

 

 Step 2 

Packages that are used: 
library(twitteR) 

library(ROAuth) 

library(plyr) 

library(dplyr) 

library(stringr) 

library(ggplot2) 

library(httr) 

library(wordcloud) 

library(tm) 

library(Rstem) 

library(psych) 

#to be installed locally 

library(sentiment) 

 

 Step 3 

Connect to API 
oauth_endpoint(authorize = "https://api.twitter.com/oauth", 

               access = "https://api.twitter.com/oauth/access_token") 

#connect to API 

download.file(url="http://curl.haxx.se/ca/cacert.pem", 

destfile="cacert.pem") 

reqURL <- 'https://api.twitter.com/oauth/request_token' 

accessURL <- 'https://api.twitter.com/oauth/access_token' 

authURL <- 'https://api.twitter.com/oauth/authorize' 

consumerKey="6mSD7XiBGxovXCT" 

consumerSecret="KKuncF624KYNADGQiF9Wl1ysp0ylxGtBsxts" 

accesstoken="921723452167294978-RJx2wwR8m168SBOlK9WHbqQhMj22Iby" 

accesssecret="3mpaDDLCnXTQrT78DNqGErVfjTk2hFt6W" 

Cred <- OAuthFactory$new(consumerKey=consumerKey, 

                         consumerSecret=consumerSecret, 

                         requestURL=reqURL, 



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 21 – Sentiment Analysis 
 

 
ISBN 978-93-80788-71-5 192 

 

                         accessURL=accessURL, 

                         authURL=authURL) 

Cred$handshake(cainfo = system.file('CurlSSL', 'cacert.pem', package = 

'RCurl')) #There is URL in Console. You need to go to it, get code and 

enter it on Console 

Once you launch the code first time, you can start from this line in the 

future (libraries should be connected) 

setup_twitter_oauth(consumer_key=consumerKey, 

                    consumer_secret=consumerSecret, 

                    access_token=accesstoken, 

                    access_secret=accesssecret) 

 
 Step 4 

# Harvest the tweets 

all_tweets = searchTwitter("#narendramodi", n=3000, lang=”en”) 

tweets_df <- twListToDF(all_tweets) 

write.csv(tweets_df,”AllTweets.csv” 

# get the text 

tweet_txt=sapply(all_tweets,function(x) x$getText()) 

# remove retweet entities 

tweet_txt = gsub(“(RT|via)((?:\\b\\W*@\\w+)+)”, 

                 “”, tweet_txt) 

 
 Step 5 

class_emo = classify_emotion(tweet_txt, 

            algorithm=”bayes”, prior=1.0) 

# get emotion best fit 

emotion = class_emo[,7] 

# substitute NA’s by “unknown” 

emotion[is.na(emotion)] = “unknown” 

# classify polarity 

class_pol = classify_polarity(tweet_txt, 

                              algorithm=”bayes”) 

# get polarity best fit 

polarity = class_pol[,4] 

 

 Step 6 
# plot distribution of Emotions 

ggplot(sent_df, aes(x=emotion)) + 

  geom_bar(aes(y=..count.., fill=emotion)) + 

  scale_fill_brewer(palette=”Dark2”) + 

  labs(x=”emotion categories”, y=”number of tweets”, 

       title=”classification based on emotion”) 

## plot distribution of Polarity 

ggplot(sent_df1, aes(x=polarity)) + 

  geom_bar(aes(y=..count.., fill=polarity)) + 

  scale_fill_brewer(palette=”Dark2”) 

K,  labs(x=”polarity categories”, 

       y=”number of tweets”, 

       title=”classification based on polarity”) 

 
 



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 21 – Sentiment Analysis 
 

 
ISBN 978-93-80788-71-5 193 

 

 Step 7 
# First, separate the words according to emotions 

tweet_emotions = levels(factor(sent_df$emotion)) 

n_tweet_emotions = length(tweet_emotions) 

tweet_emotions_docs = rep(“ “, n_tweet_emotions) 

for (I in 1:n_tweet_emotions){ 

  tmp = tweet_txt[emotion == tweet_emotions[i]] 

  tweet_emotions_docs[i] = paste(tmp, collapse=” “) 

} 

# Remove stopwords- Data Cleaning Step 
tweet_emotions_docs=removeWords(tweet_emotions_docs,stopwords(kind = “en”)) 

TweetData.corpus = Corpus(VectorSource(tweet_emotions_docs)) 

TweetData.tdm = TermDocumentMatrix(TweetData.corpus) 

TweetData.tdm = as.matrix(TweetData.tdm) 

colnames(TweetData.tdm) = tweet_emotions 

# creating, comparing and plotting the words on the cloud 

comparison.cloud(TweetData.tdm, colors = brewer.pal(n_tweet_emotions, 

 

21.3 Findings 

 

In this article, sentiment analysis is performed using ‘#narendramodi’ with 3000 tweets. 

 
Looking at the above graph we can see that #narendramodi have more positive 

sentimental response from the tweets 

 

Wordcloud 

 

Wordclouds are graphical representations of word frequency that give greater prominence 

to words that appear more frequently in a source text. The larger the word in the visual the 

more common word was in the document. This type of visualization can assist evaluators, 

with exploratory textual analysis by identifying words that frequently appear in a set of 

documents or other text. It can also be used for communicating the most salient points or 

themes in the reporting stage. 
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We see from the above wordcloud that among the most frequent words in the tweets are 

‘ministry, cast, accuses, Gujarat election, Chinese’.This suggests mixed reaction on most 

of the tweets and is directed towards work being done for India’s progress.  

 

21.4 Conclusions 

 

This paper tackles a fundamental problem of sentiment analysis, sentiment polarity 

categorization. Twitter reviews are selected as data used for the study. A sentiment polarity 

categorization has been proposed along with detailed descriptions of each step. Experiments 

for both sentence level categorization and review level categorization have been performed 

which lead to the conclusion that there has been more positive sentimental response from 

the tweets. It shows that there is a strong possibility of him getting elected again for the 2019 

elections. 

 

21.5 Recommendations 

 

Further work can be done in this area on understanding local language/ domain/ context to 

understand the data better. E.g. somebody using sarcasm/ double negative/ pun-related-to-

some other context, etc. Further work using Machine Learning can be used here. 
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Discriminant Analysis 
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Centre for Systems Biology & Bioinformatics, Panjab University, Chandigarh-India 

 

 

22.1 Introduction  

 
Discriminant analysis is a technique for analyzing data when the criterion or dependent 

variable is categorical and the predictor or independent variables are interval in nature. 

 

The objectives of discriminant analysis are as follows: 

 Development of discriminant functions, or linear combinations of the predictor or 

independent variables, which will best discriminate between the categories of the 

criterion or dependent variable (groups). 

 Examination of whether significant differences exist among the groups, in terms of the 

predictor variables. 

 Determination of which predictor variables contribute to most of the intergroup 

differences. 

 Classification of cases to one of the groups based on the values of the predictor variables. 

 Evaluation of the accuracy of classification. 

 When the criterion variable has two categories, the technique is known as two-group 

discriminant analysis.   

 When three or more categories are involved, the technique is referred to as multiple 

discriminant analysis.   

 The main distinction is that, in the two-group case, it is possible to derive only one 

discriminant function.  In multiple discriminant analysis, more than one function may 

be computed.  In general, with G groups and k predictors, it is possible to estimate up to 

the smaller of G - 1, or k, discriminant functions.  

 The first function has the highest ratio of between-groups to within-groups sum of 

squares.  The second function, uncorrelated with the first, has the second highest ratio, 

and so on.  However, not all the functions may be statistically significant.  

 

22.2 Discriminant Analysis Model 

 
The discriminant analysis model involves linear combinations of the following form:  

  D = b0 + b1X1 + b2X2 + b3X3 + . . . + bkXk  

   where 

  D = discriminant score 
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  b 's = discriminant coefficient or weight 

  X 's = predictor or independent variable 

The coefficients or weights (b), are estimated so that the groups differ as much as possible 

on the values of the discriminant function. This occurs when the ratio of between-group sum 

of squares to within-group sum of squares for the discriminant scores is at a maximum.  

 

Assumptions of the Model 

The discriminant model has the following assumptions: 

•  The predictors are not highly correlated with each other 

•  The mean and variance of a given predictor are not correlated 

•  The correlation between two predictors is constant across groups 

•  The values of each predictor have a normal distribution.  

 

22.3 Statistics Associated with Discriminant Analysis 

 

 Canonical Correlation. Canonical correlation measures the extent of association 

between the discriminant scores and the groups. It is a measure of association between 

the single discriminant function and the set of dummy variables that define the group 

membership. 

 Centroid.  The centroid is the mean values for the discriminant scores for a particular 

group.  There are as many centroids as there are groups, as there is one for each group.  

The means for a group on all the functions are the group centroids.  

 Classification matrix. Sometimes also called prediction matrix, the classification matrix 

contains the number of correctly classified and misclassified cases.  

 Discriminant function coefficients. The discriminant function coefficients 

(unstandardized) are the multipliers of variables, when the variables are in the original 

units of measurement.  

 Discriminant scores.  The unstandardized coefficients are multiplied by the values of the 

variables.  These products are summed and added to the constant term to obtain the 

discriminant  scores. 

 Eigen value.  For each discriminant function, the Eigen value is the ratio of between-group 

to within-group sums of squares. Large Eigen values imply superior functions.  

 F values and their significance. These are calculated from a one-way ANOVA, with the 

grouping variable serving as the categorical independent variable.  Each predictor, in turn, 

serves as the metric dependent variable in the ANOVA.  

 Group means and group standard deviations.  These are computed for each predictor 

for each group. 

 Pooled within-group correlation matrix.  The pooled within-group correlation matrix 

is computed by averaging the separate covariance matrices for all the groups.  

 Standardized discriminant function coefficients.  The standardized discriminant 

function coefficients are the discriminant function coefficients and are used as the 

multipliers when the variables have been standardized to a mean of 0 and a variance of 1. 
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 Structure correlations.  Also referred to as discriminant loadings, the structure 

correlations represent the simple correlations between the predictors and the 

discriminant function. 

 Total correlation matrix.  If the cases are treated as if they were from a single sample 

and the correlations computed, a total correlation matrix is obtained.  

 Wilks'  λ.  Sometimes also called the U statistic. Wilks'   λ  for each predictor is the ratio of 

the within-group sum of squares to the total sum of squares.  Its value varies between 0 

and 1.  Large values of   λ  (near 1) indicate that group means do not seem to be different.  

Small values of   λ (near 0) indicate that the group means seem to be different. 

 

22.4 R-Code for Discriminant Analysis 

 
Discriminant Analysis (Practice Example) 

 

Example: This data called IRIS data set gives the measurements in centimeters of the 

variables sepal length, sepal width, petal length and petal width, respectively for 50 flowers 

from each of 3 species of IRIS. The  three species are  setosa, versicolor, and virginica. 

We shall perform Linear Discriminant Analysis on this data. Load Library MASS 
>library(MASS) 

 

First of all, read the data from iris file (on desktop) into R as follows: 
>data1<-read.csv((“c:/desktop/iris.csv”) 

 

>head(data1) 

 

 Sepal.Length Sepal.Width  Petal.Length Petal.Width Species  

1 5.1 3.5 1.4 0.2 setosa  

2 4.9 3.0 1.4 0.2 setosa  

3 4.7 3.2 1.3 0.2 setosa  

4 4.6 3.1 1.5 0.2 setosa  

5 5.0 3.6 1.4 0.2 setosa  

6 5.4 3.9 1.7 0.4 setosa  

 

#To apply Linear Discriminat Analysis (lda), we use function lda in R as follows: 
>disc<-lda(Species~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width, 

data=data1) 

>disc 

Call: 

lda(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,  

    data = data1) 

 

Prior probabilities of groups: 
 

setosa versicolor virginica  

0.3333333 0.3333333 0.3333333  
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Group means: 
 Sepal.Length Sepal.Width Petal.Length Petal.Width  

setosa 5.006 3.428 1.462 0.246  

versicolor 5.936 2.770 4.260 1.326  

virginica 6.588 2.974 5.552 2.026  

 

Coefficients of linear discriminants: 
 LD1 LD2  

Sepal.Length 0.8293776  0.02410215  

Sepal.Width 1.5344731  2.16452123  

Petal.Length -2.2012117 -0.93192121  

Petal.Width -2.8104603 2.83918785  

 

Since there are three Species, therefore prior probabilities are fixed equal ,that is,  0.3333. 

For these three Species, two linear discriminant functions have been generated as LD1 and 

LD2. 

 

If  we want to predict the Species from Discriminant model, we use predict function in R as 

follos.  

 
>disc.p<-predict(disc, newdata=data1[c(1,2,3,4)])$class 

>disc.p 

#Determine how well the model fits 

>tab1<-table(disc.p,data=data1[,5]) # because 5th Column contains Species 

>tab1 

          data 

disc.p setosa versicolor virginica  

setosa 50 0 0  

versicolor 0 48 1  

virginica 0 2 49  

 

The first Species setosa has been 100% corrected predicted by the discriminant model (50 

out of 50). Species versicolor 96% (48 out of 50) and virginica 98% (49 out of 50). The 

overall accuracy can be assessed as follows:  
>accuracy<-sum(diag(tab1)/sum(tab1))*100 

>accuracy 

 98 

In this example the accuracy, that is, correct classification for the model is about 98%., 

which is extremely good. 
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23.1 Introduction  

 

Cluster analysis is a class of techniques used to classify objects or cases into relatively 

homogeneous groups called clusters. Objects in each cluster tend to be similar to each other 

and dissimilar to objects in the other clusters. Both cluster analysis and discriminant analysis 

are concerned with classification. However, Discriminant analysis requires prior knowledge 

of the cluster or group membership for each object or case included, to develop the 

classification rule. In cluster analysis there is no a priori information about the group or 

cluster membership for any of the objects. Groups or clusters are suggested by the data, not 

defined a priori.  

 

23.2 Statistics Associated with Cluster Analysis 

 

• Agglomeration schedule.  An agglomeration schedule gives information on the objects or 

cases being combined at each stage of a hierarchical clustering process.  

• Cluster centroid.  The cluster centroid is the mean values of the variables for all the cases 

or objects in a particular cluster.  

• Cluster centers.  The cluster centers are the initial starting points in nonhierarchical 

clustering.  Clusters are built around these centers, or seeds.  

• Cluster membership.  Cluster membership indicates the cluster to which each object or 

case belongs.  

• Dendrogram.  A dendrogram, or tree graph, is a graphical device for displaying clustering 

results.  Vertical lines represent clusters that are joined together.  The position of the line 

on the scale indicates the distances at which clusters were joined.  The dendrogram is read 

from left to right.   

• Distances between cluster centers.  These distances indicate how separated the 

individual pairs of clusters are.  Clusters that are widely separated are distinct, and 

therefore desirable.  

• Icicle diagram.  An icicle diagram is a graphical display of clustering results, so called 

because it resembles a row of icicles hanging from the eaves of a house.  The columns 

correspond to the objects being clustered, and the rows correspond to the number of 

clusters.  An icicle diagram is read from bottom to top 
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• Similarity/distance coefficient matrix.  A similarity/distance coefficient matrix is a 

lower-triangle matrix containing pairwise distances between objects or cases.  

 

23.3 Conducting Cluster Analysis 

 

 Perhaps the most important part of formulating the clustering problem is selecting the 

variables on which the clustering is based.   

 Inclusion of even one or two irrelevant variables may distort an otherwise useful 

clustering solution.   

 Basically, the set of variables selected should describe the similarity between objects in 

terms that are relevant to the marketing research problem.   

 The variables should be selected based on past research, theory, or a consideration of the 

hypotheses being tested.  In exploratory research, the researcher should exercise 

judgment and intuition.  

 

23.4 Select a Distance or Similarity Measure 

 

 The most commonly used measure of similarity is the Euclidean distance or its square. 

The Euclidean distance is the square root of the sum of the squared differences in values 

for each variable.   

 If the variables are measured in vastly different units, the clustering solution will be 

influenced by the units of measurement.  In these cases, before clustering respondents, 

we must standardize the data by rescaling each variable to have a mean of zero and a 

standard deviation of unity.  It is also desirable to eliminate outliers (cases with a typical 

values). 

 Use of different distance measures may lead to different clustering results. Hence, it is 

advisable to use different measures and compare the results.  
 

23.5 A Classification of Clustering Procedures 
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23.5.1 Select a Clustering Procedure – Hierarchical 

 

 Hierarchical clustering is characterized by the development of a hierarchy or tree-like 

structure.  Hierarchical methods can be agglomerative or divisive.   

 Agglomerative clustering starts with each object in a separate cluster.  Clusters are 

formed by grouping objects into bigger and bigger clusters.  This process is continued 

until all objects are members of a single cluster.   

 Divisive clustering starts with all the objects grouped in a single cluster.  Clusters are 

divided or split until each object is in a separate cluster.  

 Agglomerative methods are commonly used in marketing research.  They  consist of 

linkage methods, error sums of squares or variance methods, and centroid methods.   

 

23.5.2 Select a Clustering Procedure – Linkage Method 

 

 The single linkage method is based on minimum distance, or the nearest neighbor 

rule.  At every stage, the distance between two clusters is the distance between their 

two closest points 

 The complete linkage method is similar to single linkage, except that it is based on 

the maximum distance or the furthest neighbor approach.  In complete linkage, the 

distance between two clusters is calculated as the distance between their two 

furthest points 

 The average linkage method works similarly.  However, in this method, the 

distance between two clusters is defined as the average of the distances between all 

pairs of objects, where one member of the pair is from each of the clusters 

 

23.5.3 Linkage Methods of Clustering 
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23.5.4 Select a Clustering Procedure – Variance Method 

 

 The variance methods attempt to generate clusters to minimize the within-cluster 

variance 

 A commonly used variance method is the Ward's procedure.  For each cluster, the 

means for all the variables are computed.  Then, for each object, the squared Euclidean 

distance to the cluster means is calculated.  These distances are summed for all the 

objects.  At each stage, the two clusters with the smallest increase in the overall sum of 

squares within cluster distances are combined 

 In the centroid methods, the distance between two clusters is the distance between 

their centroids (means for all the variables), as shown in Figure.  Every time objects are 

grouped, a new centroid is computed.   

 Of the hierarchical methods, average linkage and Ward's methods have been shown 

to perform better than the other procedures.  

 

23.5.5 Other Agglomerative Clustering Methods 

 

 
Select a Clustering Procedure – Non-hierarchical 

 

 The nonhierarchical clustering methods are frequently referred to as k-means clustering.  

These methods include sequential threshold, parallel threshold, and optimizing 

partitioning 

 In the sequential threshold method, a cluster center is selected and all objects within a 

pre-specified threshold value from the center are grouped together.  Then a new cluster 

center or seed is selected, and the process is repeated for the uncluttered points.  Once 

an object is clustered with a seed, it is no longer considered for clustering with 

subsequent seeds 



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 23 – Cluster Analysis 
 

 
ISBN 978-93-80788-71-5 203 

 

 The parallel threshold method operates similarly, except that several cluster centers are 

selected simultaneously and objects within the threshold level are grouped with the 

nearest center 

 The optimizing partitioning method differs from the two threshold procedures in that 

objects can later be reassigned to clusters to optimize an overall criterion, such as 

average within cluster distance for a given number of clusters. 

 It has been suggested that the hierarchical and nonhierarchical methods be used in 

tandem.  First, an initial clustering solution is obtained using a hierarchical procedure, 

such as average linkage or Ward's.  The number of clusters and cluster centroids so 

obtained are used as inputs to the optimizing partitioning method 

 Choice of a clustering method and choice of a distance measure are interrelated.  For 

example, squared Euclidean distances should be used with the Ward's and centroid 

methods.  Several nonhierarchical procedures also use squared Euclidean distances. 

 

23.6 Decide on the Number of Clusters 

 

 Theoretical, conceptual, or practical considerations may suggest a certain number of 

clusters 

 In hierarchical clustering, the distances at which clusters are combined can be used as 

criteria.  This information can be obtained from the agglomeration schedule or from the 

dendrogram  

 In nonhierarchical clustering, the ratio of total within-group variance to between-group 

variance can be plotted against the number of clusters.  The point at which an elbow or a 

sharp bend occurs indicates an appropriate number of clusters 

 The relative sizes of the clusters should be meaningful.  

 

23.7 Interpreting and Profiling the Clusters 

 

 Interpreting and profiling clusters involves examining the cluster centroids. The 

centroids enable us to describe each cluster by assigning it a name or label 

 It is often helpful to profile the clusters in terms of variables that were not used for 

clustering.  These may include demographic, psychographic, product usage, media usage, 

or other variables.  

 

23.8 Assess Reliability and Validity 

 

 Perform cluster analysis on the same data using different distance measures.  Compare 

the results across measures to determine the stability of the solutions. 

 Use different methods of clustering and compare the results. 

 Split the data randomly into halves.  Perform clustering separately on each half.  Compare 

cluster centroids across the two subsamples. 



Analyzing and Visualizing Data with R Software – A Practical Manual 
 

Chapter 23 – Cluster Analysis 
 

 
ISBN 978-93-80788-71-5 204 

 

 Delete variables randomly.  Perform clustering based on the reduced set of variables.  

Compare the results with those obtained by clustering based on the entire set of 

variables.  

 In nonhierarchical clustering, the solution may depend on the order of cases in the data 

set.  Make multiple runs using different order of cases until the solution stabilizes.  

 

23.9 R-Code for Cluster Analysis 

 
Hierarchical Cluster Analysis (Practice Example) 

Example: The data related to 32 different Cars (Make) with information related to 11 

variables like: mileage, cylinder, displacement, horse power etc. and the data is recorded in 

Excel file names as: mtcars  

 
mpg (v1) 

cyl   (v2) 

disp  (v3) 

hp     (v4) 

drat  (v5) 

wt     (v6) 

qsec  (v7) 

vs     (v8) 

am    (v9) 

gear  (v10) 

carb  (v11) 

 

Our first aim is to import the file, say on desktop, into R as follows: 

 
> data<-read.csv(“c:/desktop/mtcars.csv”) 
> head (data) 

 mpg cyl disp hp drat wt qsec vs am gear carb 

Mazda RX4 21.0 6 160.0  110  3.90 2.620 16.46 0 1 4 4 

Mazda RX4 Wag 21.0 6 160.0  110  3.90  2.875 17.02 0 1 4 4 

Datsun 710 22.8 4 108.0 93  3.85  2.320 18.61 1 1 4 1 

Hornet 4 Drive 21.4 6 258.0  110  3.08  3.215 19.44 1 0 3 1 

Hornet Sportabout  18.7 8 360.0  175  3.15  3.440 17.02 0 0 3 2 

Valiant  18.1 6 225.0  105 2.76  3.460 20.22 1 0 3 1 

 

Next, we compute distance matrix, apply hierarchal clustering and plot dendrogram as 

follows: 

 
> d <- dist(as.matrix(data))       # find distance matrix (distance matrix 

will be displayed) 

> hc <- hclust(d)                # apply hierarchical clustering  

> plot(hc)                         # plot the dendrogram 
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Careful inspection of the dendrogram will help us to identify approximate number of 

Clusters. Then we can perform Non-hierarchical clustering by specifying approximate 

numbers of Clusters. (obtained from hierarchical clustering). 

 

In general, there are many choices of cluster analysis methodology. The hclust function in R 

uses the complete linkage method for hierarchical clustering by default. This particular 

clustering method defines the cluster distance between two clusters to be the maximum 

distance between their individual components. At every stage of the clustering process, the 

two nearest clusters are merged into a new cluster. The process is repeated until the 

whole data set is agglomerated into one single cluster.  

 

Suppose dendrogram results into three clusters, and then we can form Non-hierarchical 

clustering (kmeans) by specifying approximate numbers of Clusters as follows: 

 
>results<-kmeans (data, 3) 

>results 

 

Available components: 
[1] "cluster"      "centers"      "totss"        "withinss"     

"tot.withinss"       

    "betweenss"    

[7] "size"         "iter"         "ifault"       

 
>results$size     # will display the size of each cluster 

>results$centres  # will display the cluster centres 

 

Similarly, other information for above components can be displayed. 

 

 




