

Hyderabad (Sind) National Collegiate Board's

Kishinchand Chellaram College
Churchgate, Mumbai - 20

Department of Statistics
under the aegis of DBT-STAR Status Scheme

Editor

Kishinchand Chellaram College
Vidyasagar Principal K.M. Kundnani Chowk,
124, Dinshaw Wachha Road,
Churchgate, Mumbai 400020.
Tel: +91-22-2285 5726; +91-22-6698 1000;
Fax: +91-22-2202 9092;
Email: office@kccollege.edu.in
Website: http://www.kccollege.edu.in/

57–P, Kunj Vihar–II,
Yashoda Nagar, Kanpur-11
Ph.: 0512-2633004
Email: shailjaprakashan@gmail.com

Dr. Asha Angnamal Jindal
Department of Statistics

ISBN 978-93-80788-93-7

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

i

ISBN 978-93-80788-93-7

Preface

Python is a powerful programming language that is capable of conducting any kind of data analysis

in the Sciences, Social Sciences, Corporate world and Management. Mathematics is generally

thought to be the language of science whereas Data Analysis is the language of research. Research is

important for human progress, so as long as there is research there will be a need to analyze data.

The present book is designed to meet this challenge of analysis of data. In our teaching, we

generally say "Analyze this data using python, get the manuals or visit website". If you don't know

how, then this book titled “Analyzing and Visualizing Data using Free Open Source Software-

Python Programming with case studies” (Jupyter Notebook 6.0.3 and Python 3.7.6) is an answer

to all such queries. It is designed in such a way that Python procedures become clear to the

beginner. Also, it works as an effective reference for anyone conducting data analysis.

This involved the expansion of the original concept to include essentially all major statistical

procedure as well as regression and advance models. This is the result of years of

teaching/research experience of contributors that you now hold in your hands.

I, Dr. Asha A. Jindal, Associate Professor and Head, Department of Statistics wish to acknowledge all

the contributors who put their creative efforts in writing the chapters. I sincerely acknowledge

Principal Dr. Hemlata K. Bagla, K. C. College and Dr. Sagarika V. Damle, DBT-Star Status Coordinator

for their support and encouragement.

I express sincere gratitude to Mr. Ashutosh Tiwari, Shailja Prakashan, Kanpur for wholeheartedly

giving ISBN number for this book and encouraging this initiative. I thankfully acknowledge Mr.

Roshan Khilani for the book cover page designing to final formatting of the present book, Mr.

Shubham Niphadkar who contributed substantially to the design and format chapters of present

book.

Dr. Asha Jindal

EDITOR

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

ii

ISBN 978-93-80788-93-7

Message

It is heartening to learn that Dr. Asha Jindal, Head, Department of Statistics along with team

of enthusiastic budding researchers has undertaken this exercise of preparing this handy

book on free open source software "Python Programming with Case Studies", to meet

various challenges, while analysing Datasets generated from different fields.

This book contains simple and doable data set and codes on how to prepare for analytics

and what to do when caught in an analytical challenge . I am sure this crisp and informative

document would enable the students and researcher community to prepare and manage

analytics more effectively.

I am confident that it will also be widely useful for Educational institutions, Experts, Data

Scientist and other Stakeholders as a ready recknor.

I congratulate Department of Statistics for introducing this book , under the aegis of DBT-

Star College Status Scheme.

Dr. Kishu Mansukhani

President, H(S)NC Board

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

iii

ISBN 978-93-80788-93-7

Message

“A good teacher can inspire hope, ignite the imagination, and instill a love of learning.”

As Principal of K C College it gives me the greatest joy to see my teachers fulfilling their role and

going beyond for the cause of education and students! A heartfelt congratulations to the

Department of Statistics, under the aegis of DBT-Star College Status Scheme, for preparing a

comprehensive list of articles, algorithm and codes in a book as well as e- book form titled "Python

Programming with Case studies". We, as mentors, have a great responsibility of fortifying our

students, making them capable by developing skills in them so that they are successful in their

careers.

This skill oriented book will help teachers to be at par with the new methodology & technology -

and this in turn will help them guide students and develop skills in them. The book keeps abreast of

the latest technology, demands and needs of the industry and uses a detailed, step-by-step

approach with the help of Information, Education and Communication (IEC) tools to enhance the

skills of reader’s.

The Book is a valuable addition untertaken by the Statistics Department to build good analysts and

to empower their learning. In today’s times, technological tools must be utilized to create audio-

visual clips for quicker dissemination of knowledge through digital platforms!

I wish the publication of this book all success.

Dr. Hemlata K. Bagla

Principal, K. C. College

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

iv

ISBN 978-93-80788-93-7

Foreword

The novelty of this book, “Analyzing and Visualizing Data using free

open-source software Python Programming with case studies”

emerges out of its context and from within its content. In contextual

terms, Python is very popular and cutting-edge programming

language which is widely used in big data analysis. This language is

very user friendly and has wide applications with Python libraries.

It can be easily integrated with other programming languages. The

substantial practical relevance of this book is underlined through its

purported attempt to introduce Python programming language in a

very simple way to the beginners as well as advance learners.

In terms of the contents, this book certainly merits a leading position as there is a wide

variety of applications of Python programming language with applications, and case studies

are covered. The innovative qualities evidenced in various chapters are excellent and to my

mind, this is demonstrated originality of a high order. This edited book consists of 16

chapters and 4 case studies. The first chapter introduces Python programming. Optimum

strategies in Python are covered in the next couple of chapters. Subsequent chapters

discuss graphical representation, descriptive statistics, correlation and regression, and

probability distribution, which are covered in the introductory statistics course. Advanced

statistical programming techniques using Python are discussed in the next few chapters,

which include ANOVA, ANCOVA, Factor Analysis, Cluster Analysis, and Non-parametric test.

The unique part of the book is the four case studies on Polio, Air pollution, Diabetes, and

analysing happiness development index using Python. The book offers a unique insight into

the linking of innovative ideas very much on the academic plane to the potential

applications, as discussed in the case studies. Last but not the least, I will like to

congratulate the Editor, Dr Asha Jindal for tackling such a refractory and complex area of

Python programming with keen insight, modern tools, and fresh ideas to produce an

excellent book. It is my fervent hope that this book will act as a torch bearer not only for

the students of statistics but also for researchers in the area of big data.

Dr Kuldeep Kumar

PhD(Kent), FSS, C.Stat,

Professor, Bond Business School

Bond University, Gold Coast, Queensland 4229, AUSTRALIA

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

v

ISBN 978-93-80788-93-7

Index

 Title Page No.
1 Introduction to Python Programming

Mr. Pravesh Tiwari
L&T Financial Services, Manager

…001

2 Functions, Modules, Advanced Operations and Pandas in Python
Mr. Pravesh Tiwari
L&T Financial Services, Manager

…014

3 Optimisation Strategy in Python-I
(Linear Programming Problem and Integer Programming Problem using
pulp code)
Dr. Asha Jindal
Associate Professor and Head, Department of Statistics, K. C. College

…028

4

Optimisation Strategy in Python-II
(Dynamic Programming)
Principal Dr. C.S. Kakade
Department of Statistics, Anandibai Raorane College. Vaibhavwadi

…031

5 Graphs and Diagrams (2D and 3D using Python)
Mrs. Pratiksha Kadam
Assistant Professor, Department of Statistics, K.C. College

…035

6 Factorization of a Polynomial over a Finite Field
Mrs. Mrunal Hardikar
Assistant Professor, Department of Mathematics, K. C. College

…048

7 Descriptive Statistics
Mr. Shubham Niphadkar
Assistant Professor, Department of Statistics, K. C. College

…052

8 Correlation, Regression and Curve Fitting
Mr. Pritesh Patil
Assistant Professor, Department of Statistics, Kirti College

…066

9 Probability Distribution
Mr. Sachin Sahmrao Bhaskar
Assistant Professor, Department of Statistics, Anandibai Raorane College.
Vaibhavwadi

…079

10 Statistical Tests
Ms. Divya Poojari
Tata Consultacy Services, Statistical Programmer

…096

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

vi

ISBN 978-93-80788-93-7

11 ANOVA Procedure: One Way and Two Way
Dr. Asha Jindal
Associate Professor and Head, Department of Statistics, K. C. College

…113

12 ANCOVA Procedure
Mr. Shubham Niphadkar
Assistant Professor, Department of Statistics, K. C. College

…118

13 Predictive Analysis of Medical Cost
(Study of Regression Analysis to Random Forest Regression on Medical
Cost)
Mr. Sourav S. Tiwari
Postgraduate student, Department of Statistics, NMIMS

…129

14 Factor Analysis
Mr. Prathamesh Thite
Data Analyst, Dinero Software Pvt. Ltd.

…156

15 Cluster Analysis
Mr. Abhay Deshpande
Freelance Researcher

…165

16 Non-Parametric Test (Choice and Application using Python)
Dr. S. B. Muley
Assistant Professor, Department of Statistics, K.C. College

…171

 Case Studies

17 Case Study on Polio in Greater Mumbai
Ms. Anjali Sutar and Ms. Priyanka Chataule
Assistant Professors, Department of Statistics, K.C. College

…183

18 Analysis of Air Pollution in New Delhi
Mr. Rajesh Kalal and Mr. Shubham Gupta
DBT- Star College Status Scheme Researchers, Department of Statistics

…194

19 Analyzing Happiness Development Index using Python
Mr. Satvik Tandon, Mr. Alpesh Rathod and Mr Gaurav Jadhav
DBT- Star College Status Scheme Researchers, Department of Statistics

…213

20 Analysis of Diabetes
Mr. Aditya Shrivastava and Mr. Hruturaj Nikam
DBT- Star College Scheme Researchers, Department of Computer Science

…236

Download Resources used in the book from here.

Click here to DOWNLOAD

https://drive.google.com/file/d/1bY4ClNahZ7ximWmeigFbRmOlzvj3UPRx/view?usp=sharing

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

1

ISBN 978-93-80788-93-7

 Chapter 1

Introduction to Python Programming

Mr. Pravesh Tiwari, L&T Financial Services, Manager

Python is a very simple yet very powerful programming language. Python is developed by

Guido van Rossum. Guido van Rossum started implementing Python in 1989.

1.1 What can we do with Python?

1. Web framework like Django and Flask are based on Python. They help you write server

side code which helps you manage database, write backend programming logic, mapping

urls etc.

2. There are many machine learning applications written in Python. Face recognition and

Voice recognition in your phone is another example of machine learning.

3. Data analysis and data visualization in form of charts can also be developed using

Python.

4. Scripting is writing small programs to automate simple tasks such as sending automated

response emails etc.

5. You can develop games using Python.

1.2 Basic Syntax

1. Indentation is used in Python to delimit blocks. The number of spaces is variable, but all

statements within the same block must be indented the same amount.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

2

ISBN 978-93-80788-93-7

2. The header line for compound statements, such as if, while, def, and class should be

terminated with a colon (:)
1.f 5>2:

print("True")

 print("Yes Its True")
File "<1.python-1.nput-2-977590f094d0>", line 3

print("Yes Its True")

IndentationError: unindent does not match any outer indentation level

3. The semicolon (;) is optional at the end of statement.

4. Printing a statement to screen
print{"Hello”); print{"World”)

 Hello

World

5. Reading keyboard input
Name= input(“what is Your Name: '")

 what is Your Name: Pravesh

6. Comments

-Single Line

-Multiple Lines
single Line coment ‘’’Multiple

Line

Coments’’’

7. Python files have extension .py

1.3 Variables

Variables are containers for storing data values. A variable is created the moment you first

assign a value to it.
z=0.05

print(z)

0.05

x=6

print(x)

6

y=”storing value”

print(y)

storing value

Variables do not need to be declared with any particular type and can even change type after

they have been set. Variables can change type, simply by assigning them a new value of a

different type.
x = 85

print (“First value is:”, x)

x =”new value”

print(“changed value is:” + x)

First value is: 85

Changed value is: new value

String variables can be declared either by using single or double quotes.

 x = "John“ is the same as x = 'John’

Python allows you to assign a single value to several variables simultaneously.
X = y = Z = 25

print(x,y,z)

25 25 25

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

3

ISBN 978-93-80788-93-7

You can also assign multiple objects to multiple variables.
x,y,z = 25, “string”, 86

print(x,y,z)

25 string 86

Note:

A variable can have a short name (like x and y) or a more descriptive name (age, carname,

total_volume).

Rules for Python variables:

A variable name must start with a letter or the underscore character.

A variable name cannot start with a number. A variable name can only contain alpha-numeric

characters and underscores (A-z, 0-9, and _).

Variable names are case-sensitive (age, Age and AGE are three different variables).

1.4 Data Types in Python

Data type defines the type of the variable, whether it is an integer variable, string variable,

tuple, dictionary, list etc. Python data types are divided in two categories, mutable data types

and immutable data types.

The data stored in memory can be of many types. For example, a person's age is stored as a

numeric value and his or her address is stored as alphanumeric characters. Python has

various standard data types that are used to define the operations possible on them and the

storage method for each of them.

To check the data type use type() function.
In [1]: a= [‘1’,2.2,3+1j]

In [2]: type(a)

Out [2]: list

Data Types in Python – Numbers:
Number data types store numeric values. They are immutable data types, means that

changing the value of a number data type results in a newly allocated object.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

4

ISBN 978-93-80788-93-7

There are three numeric types in Python:

1. Integer - Int, or integer, is a whole number, positive or negative, without decimals, of

unlimited length.

2. Float - Float, or "floating point number" is a number, positive or negative, containing one

or more decimals. Float can also be scientific numbers with an "e" to indicate the power

of 10.

3. Complex - Complex numbers are written with a “i" as the imaginary part (a+bi).

You can convert from one type to another with the int(), float(), and complex() methods.

For e.g.:
In [5]: int(7.59)

Out[5]: 7

In [6]: float(8)

Out [6]: 8.0

In [7]: complex(8)

Out[7]: (8+0j)

Mathematical functions

Functions Description

abs(x) The absolute value of x: the (positive) distance between x and

zero.

exp(x) The exponential of x: ex

log(x) The natural logarithm of x, for x> 0

pow(x, y) The value of x**y.

round(x, n) x rounded to n digits from the decimal point.

max(x1, x2,...) The largest of its arguments: the value closest to positive infinity

min(x1, x2,...) The smallest of its arguments: the value closest to negative

infinity

sqrt(x) The square root of x for x > 0

Data Types in Python – Strings:

Python Strings are Immutable objects that cannot change their values.

You can update an existing string by (re)assigning a variable to another string.
In [6]: string= “Hello world”

 string[1]=”1”

Traceback (most recent call last):

Flie”<ipython-input-6-e84b33767afb>”, line 2, in <module>

String[1] = “1”

TypeError: ‘str’ object does not support item assignment

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals.

String indexes are starting at 0 in the beginning of the string and working their way from -1

at the end.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

5

ISBN 978-93-80788-93-7

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals.
example1 = ‘single quote’

example2 = “double quote”

example3 = ‘’’multiline

 quote example’’’

Common String Operators

Assume string variable a holds 'Hello' and variable b holds 'Python’

Operator Description Example

+ Concatenation - Adds values on either side of the
operator

a+b will give HelloPython

* Repetition - Creates new strings, concatenating
multiple copies of the same string

a*2 will give -HelloHello

[] Slice - Gives the character from the given index a[1] will give e

[:] Range Slice - Gives the characters from the given range a[1:4] will give ell

in Membership - Returns true if a character exists in the
given string

H in a will give True

not in Membership - Returns true if a character does not exist
in the given string

M not in a will give True

Note: To convert a variable x to string use str(x).

Data Types in Python – List:

A list in Python is an ordered group of items or elements, and these list elements don't have

to be of the same type. Python Lists are mutable objects that can change their values.

A list contains items separated by commas and enclosed within square brackets.

List indexes like strings starting at 0 in the beginning of the list and working their way from

-1 at the end.

Similar to strings, Lists operations include slicing ([] and [:]) , concatenation (+), repetition

(*), and membership (in).

Access Items
In (7): temp1ist = ["Cherry","88",98,"coin",88.568]

 print ("First 3 element:" ,temp1ist[0])

 print ("Last element:” ,temp1ist[-1])

First element: Cherry

Last element: 88.568

Range of Indexes
In [8]: templist = ["Cherry", "88", 98, "coin", 88.568]

 print ("First 3 elements : ", templist[0:3])

First elements: ["Cherry", ‘88’, 98]

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

6

ISBN 978-93-80788-93-7

Update List
In [14]: print(“Original list:”, templist)

 templist[0]=”Guava”

 print(“changed list:”, templist)

Original list: [‘Guava’, ‘88’, 98,’coin’, 88.568]

Changed list: [‘Guava’,’88’, 98,’coin’, 88.568]

Delete elements from List
In [17]: print("Origina1 1ist:", temp1ist)

 de1(temp1ist[2])

 print("Changed 1ist: ", temp1ist)

Origina1 1ist: [‘Cherry’, ‘88’, 98, ‘coin’, 88.568]

Changed 1ist: [‘Cherry’, ‘88’, ‘coin’, 88.568]

Built-in List Functions & Methods

Python includes the following list functions:

Function Description

len(list) Gives the total length of the list. for e.g.

list1=[1,2,4,3]

len(list1)

max(list) Returns item from the list with max value. for e.g.

list1=[1,2,4,3]

max(list1)

min(list) Returns item from the list with min value. for e.g.

list1=[1,2,4,3]

min(list1)

list(tuple) Converts a tuple into list. for e.g.

tuple=(1,2,4,3)

list(tuple)

sum(list) Add all elements of a list. for e.g.

list1=[1,2,4,3]

sum(list1)

Data Types in Python – Tuples:

A tuple is a collection which is ordered and unchangeable. In Python tuples are written with

round brackets. Python Tuples are Immutable objects that cannot be changed once they

have been created.

A tuple contains items separated by commas and enclosed in parentheses instead of square

brackets. You can update an existing tuple by (re)assigning a variable to another tuple.

The rules for tuple indices are the same as for lists and they have the same operations,

functions as well. To write a tuple containing a single value, you have to include a comma,

even though there is only one value. For e.g. tup1 = (50,);

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

7

ISBN 978-93-80788-93-7

Python tuple method tuple() converts a list of items into tuples.
In [7]: list=(2,4,3)

 list[0]=5

Traceback (most recent ca11 1ast):

 Fi1e "<ipython-input-7-83ba3d25a7e6>", 1ine 3, in <modu1e>

1ist1[0] = 5

TypeError:’tuple’ object does not support item assignment

Data Types in Python – Dictionary:

A dictionary is a collection which is unordered, changeable and indexed. In Python

dictionaries are written with curly brackets, and they have keys and values. Each key is

separated from its value by a colon (:), the items are separated by commas, and the whole

thing is enclosed in curly braces. An empty dictionary without any items is written with just

two curly braces, like this: {}. Keys are unique within a dictionary while values may not be.

The values of a dictionary can be of any type.

Creating Dictionary
In [8]: thisdict = {

 “brand”: “Ford”

 ”model1”:”Mustang”,

 ”year”:1964

 }

 print(thisdict)

(‘brand’:’Ford’, ’model’: ‘mustang’,’year’: 1964)

Slicing Dictionary
In [10]: print(“Brand name: ”, thisdict[“brand”])

(‘Brand name:’, ‘Ford’)

In [11]: print(“Brand name: ”, thisdict[“brand”])

 print(“”Year: ”, thisdict[“Year”])

(‘Brand name: ’, ‘Ford’)

(‘Year: ’, 1964)

Updating Dictionary
In [14]: print(thisdict)

 thisdict["brand"] ="Mercedes"; #update existing entry

 print(thisdict)

{‘brand’: ‘Ford’, ‘model’: ‘Mustang’, "year’: 1964}

{‘brand’: ‘Mercedes’, ‘model’: ‘Mustang’, ‘year’: 1964}

Adding new key-value in Dictionary
In [15]: print(thisdict)

 thisdict['Price'] = 50000

 print(thisdict)

{'brand': 'Mercedes'. 'model': 'Mustang'. 'year': 1964}

{'Price': 50000, 'brand': 'Mercedes', 'model': 'Mustang'. 'year': 1964}

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

8

ISBN 978-93-80788-93-7

Removing elements from Dictionary
In (28): print(thisdict)

 :del thisdict['Price']

 : print(thisdict)

{‘Price': 50000, 'brand": 'Mercedes', ‘model': mustang", 'year": 1964} {‘brand':

‘Mercedes’, 'model’: ‘mustang', "year": 1964}

thisdict.clear() can be used to delete all elements of dictionary and del thisdict can be used

to delete entire dictionary.

1.5 Operators in Python

Operators are the constructs which can manipulate the value of operands. Consider the

expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator.

Python language supports the following types of operators.

➢ Arithmetic Operators

➢ Comparison (Relational) Operators

➢ Assignment Operators

➢ Logical Operators

➢ Bitwise Operators

➢ Membership Operators

➢ Identity Operators

Operators in Python – Arithmetic Operators:

Assume variable a holds 10 and variable b holds 20.

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand

operand.

a – b = -10

* Multiplication Multiplies values on either side of the

operator

a * b = 200

/ Division Divides left hand operand by right hand

operand

b / a = 2

% Modulus Divides left hand operand by right hand

operand and returns remainder

b % a = 0

** Exponent Performs exponential (power) calculation on

operators

a**b =10 to the power 20

//Floor Division The division of operands where the result is

the quotient in which the digits after the

decimal point are removed. But if one of the

operands is negative, the result is floored, i.e.,

9//2 = 4 and 9.0//2.0 = 4.0, -

11//3 = -4, -11.0//3 = -4.0

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

9

ISBN 978-93-80788-93-7

rounded away from zero (towards negative

infinity) −

Operators in Python – Comparison Operators:

Assume variable a holds 10 and variable b holds 20

Operator Description Example

== If the values of two operands are equal, then the

condition becomes true.

(a == b) is not true.

!= If values of two operands are not equal, then condition

becomes true.

(a != b) is true.

<> If values of two operands are not equal, then condition

becomes true.

(a <> b) is true. This is

similar to != operator.

> If the value of left operand is greater than the value of

right operand, then condition becomes true.

(a > b) is not true.

< If the value of left operand is less than the value of right

operand, then condition becomes true.

(a < b) is true.

>= If the value of left operand is greater than or equal to the

value of right operand, then condition becomes true.

(a >= b) is not true.

<= If the value of left operand is less than or equal to the

value of right operand, then condition becomes true.

(a <= b) is true.

Operators in Python – Assignment Operators:

Assume variable a holds 10 and variable b holds 20

Operator Description Example

= Assigns values from right side operands to left side

operand

c = a + b assigns value of

a + b into c

+= Add AND It adds right operand to the left operand and assign the

result to left operand

c += a is equivalent to c =

c + a

-= Subtract

AND

It subtracts right operand from the left operand and

assign the result to left operand

c -= a is equivalent to c =

c - a

*= Multiply

AND

It multiplies right operand with the left operand and

assign the result to left operand

c *= a is equivalent to c =

c * a

/= Divide

AND

It divides left operand with the right operand and

assign the result to left operand

c /= a is equivalent to c =

c / ac /= a is equivalent

to c = c / a

%=Modulus

AND

It takes modulus using two operands and assign the

result to left operand

c %= a is equivalent to c

= c % a

**=

Exponent

AND

Performs exponential (power) calculation on

operators and assign value to the left operand

c **= a is equivalent to c

= c ** a

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

10

ISBN 978-93-80788-93-7

//= Floor

Division

It performs floor division on operators and assign

value to the left operand

c //= a is equivalent to c

= c // a

Operators in Python – Bitwise Operators:

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60 and b =

13. Now in binary format they will be as follows:

a = 0011 1100 and b = 0000 1101

Operator Description Example

& Binary AND Operator copies a bit to the result if

it exists in both operands

(a & b) (means 0000 1100)

| Binary OR It copies a bit if it exists in either

operand.

(a | b) = 61 (means 0011 1101)

^ Binary XOR It copies the bit if it is set in one

operand but not both.

(a ^ b) = 49 (means 0011 0001)

~ Binary Ones

Complement

It is unary and has the effect of

'flipping' bits.

(~a) = -61 (means 1100 0011 in 2's

complement form due to a signed

binary number.

<< Binary Left

Shift

The left operands value is moved

left by the number of bits specified

by the right operand.

a << 2 = 240 (means 1111 0000)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

11

ISBN 978-93-80788-93-7

>> Binary

Right Shift

The left operands value is moved

right by the number of bits specified

by the right operand.

a >> 2 = 15 (means 0000 1111)

Operators in Python – Logical, Identity, Membership:
Assume variable a holds 10 and variable b holds 20

Logical

Operators

Description Example

and Returns True if both statements are true a < 11 and b < 21

or Returns True if one of the statements is true a< 5 or b< 21

not Reverse the result, returns False if the result is true not(a < 5 and b < 10)

Identity Operators Description Example

is Returns true if both variables are the same object a is b

is not Returns true if both variables are not the same object a is not b

Membership

Operators

Description Example

in Returns True if a sequence with the specified value

is present in the object

a in [5,6,7,8,

10]

not in Returns True if a sequence with the specified value

is not present in the object

b not in

[5,6,7,8, 10]

1.6 Control Structures in Python

In general, statements are executed sequentially: The first statement in a function is executed

first, followed by the second, and so on. There may be a situation when you need to execute

a block of code several number of times. Programming languages provide various control

structures that allow for more complicated execution paths. A loop statement allows us to

execute a statement or group of statements multiple times.

if,if…else and if…elif…else:
Syntax Example

if test expression:

 statement

In [1]: num = 3

 :if num > 0:

 print (num, "is positive number")

(3,'is a positive number')

Syntax Example

if test expression:

 statement_1

else:

In [2]: num = -1

 :if num > 0:

 print (num, "is positive number")

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

12

ISBN 978-93-80788-93-7

 statement_2 else:

 print(num"is not a positive number")

(-1,'is a positive number')

Syntax Example

if test expression:

 statement_1

elif:

statement_2

else:

statement_3

num= -5

if num> 0:

 print(num, "is a positive number.")

elif num> 0:

 print(num, "is a negative number.")

else:

 print("number is zero.")

Python for loop:

The for loop in Python is used to iterate over a sequence (list,tuple,string) or other iterable

objects. Iterating over a sequence is called traversal.

Syntax of for Loop
for val in sequence:

 Body of for loop

Here, val is the variable that takes the value of the item inside the sequence on each iteration.

Loop continues until we reach the last item in the sequence. The body of for loop is separated

from the rest of the code using indentation.

Examples
In [6]: Names = ["Vinay", "Pramod", "Richa", "Kanak"]

 for i in Names:

 print(i)

Vinay

Pramod

Richa

Kanak

In [7]: numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

 sum =0

 for val in number:

 print(“the sum is”, sum)

(‘The sum is’, 48)

In [8]: digits =[0,1,5]

 for i in digits:

 print(i)

 else:

 print(“No number left”)

0

1

5

No number left

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 1 – Introduction to Python Programming

13

ISBN 978-93-80788-93-7

Python break statement:

The break statement terminates the loop containing it. Control of the program flows to the

statement immediately after the body of the loop. If, break statement is inside a nested loop

(loop inside another loop), break will terminate the innermost loop.
In [2] :for val in “string”:

 if val== "i":

 break

 print(val)

 print("The end")

s

t

r

The end

Python continue statement:

The continue statement is used to skip the rest of the code inside a loop for the current

iteration only. Loop does not terminate but continues on with the next iteration.
In [2] :for val in “string”:

 if val== "i":

 continue

 print(val)

 print("The end")

s

t

r

n

g

The end

In Python programming, pass is a null statement. The difference between a comment and

pass statement in Python is that, while the interpreter ignores a comment entirely, pass is

not ignored.
In [7]: for num in range(1,6):

 If num==3:

 pass

 else:

 print(“Num = {}” .format(num))

Num =1

Num =2

Num =4

Num =5

1.7 References

1. https://www.programiz.com/python-programming

2. https://www.tutorialspoint.com/python/index.htm

3. https://www.w3resource.com/python/python-tutorial.php

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

14

ISBN 978-93-80788-93-7

Chapter 2

Functions, Modules, Advanced Operations and

Pandas in Python

Mr. Pravesh Tiwari, L&T Financial Services, Manager

2.1 Python Functions

A function is a block of organized, reusable code that is used to perform a single, related

action. Functions provide better modularity for your application and a high degree of code

reusing.

Defining a Function:

1. Keyword def marks the start of function header.

2. Parameters (arguments) through which we pass values to a function. They are optional.

3. A colon (:) to mark the end of function header.

4. Optional documentation string (docstring) to describe what the function does.

5. One or more valid python statements that make up the function body. Statements must

have same indentation level.

6. An optional return statement to return a value from the function.
In [9]: def printme(name):

 “this prints a passed name with string into this function”

 print(“Hi”+ name + “, welcome in the class”)

In [10]: print(“Sumit”)

Hi Sumit, welcome in the class

You can send any data types of parameter to a function (string, number, list, dictionary etc.),

and it will be treated as the same data type inside the function.

In [14]: def selinfo(infolist):

 print(“Name: ”, infolist[0])

 print(“Age: ”, infolist[1])

 print(“Hobby:”, infolist[2])

 info = [“Justin”, 25, “singing”]

Name: Justin

Age: 25

Hobby:Singing

In [15]: def addition(x,y):

c = x + y

In [18]: def Operation(x,y):

add = x+y

sub = x-y

product = x*y

divide = x/y

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

15

ISBN 978-93-80788-93-7

return c

In [16]: addition(5,6)

Out[16]: 11

return add, sub, product,

divide

 Operation(5,6)

Out[18]:(11,-1,30,

0.83333333333333333333334)

In [19]: def Operation(x,y):

add = x+y

sub = x-y

product = x*y

divide = x/y

return add, sub, product, divide

a,b,c,d = operation(5,6)

2.2 Python Modules

A module is a file consisting of Python code. A module can define functions, classes and

variables. A module can also include run-able code. We use modules to break down large

programs into small manageable and organized files. Furthermore, modules provide

reusability of code.

We can define our most used functions in a module and import it, instead of copying their

definitions into different programs.

Python modules can be imported using import statement. For e.g. import pandas.

Python's from statement lets you import specific attributes from a module into the current

namespace.
from modname import name1[, name2[, ... nameN]]

It is also possible to import all names from a module into the current namespace by using the

following import statement.
from modname import *

A module can be installed using pip command for e.g. pip install pandas
def add(x,y):

return(x+y)

def subtract(x, y):

return(x-y)

import os

os.chdir

import calculation

#to Rename

from calculation import calc

2.3 Advanced Operations

Some Basic Operations-Lists:
templist = [] #create emtylist

fruit = [“Apple ” , ”Orange” , “Guava” , “Mango” , “Banana” , “Kiwi”]

In [2] : print(fruits[0]) #Slicing first element

Apple

In [3]: print(fruit[-1]) #Slicing last element

Kiwi

In [4]: print(fruit[2:5]) #element 3rd to 5th

[‘Guava’, ‘Mango’ , ‘Banana’]

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

16

ISBN 978-93-80788-93-7

In [5]: print(fruit[:-2]) #excluding last 2 element

[‘Apple ‘, ‘orange’, ‘Guava’, ‘Mango’]

In [6]: print(fruits[3:]) #element 4th to end

[‘Mango’, ‘Banana’, ‘Kiwi’]

Negative Indexing of List

Adding and Changing elements of list

We can use assignment operator (=) to change an item or a range of items.
numbers= [2, 4, 5, 5, 0, 9, 7]

numbers[1] = 55

numbers

[2, 55, 5, 5, 0, 9, 7]

numbers= [2, 4, 5, 5, 0, 9, 7]

numbers[1:4] = [33,57,78]

numbers

[2, 33,57,78, 0, 9, 7]

We can add one item to a list using append() method or add several items using extend()

method.
numbers= [2, 4, 5, 5, 0, 9, 7]

numbers.extend([0.05,0.09,0.5])

numbers

[2, 4, 5, 5, 0, 9, 7,0.05,0.09,0.5]

numbers= [2, 4, 5, 5, 0, 9, 7]

numbers.append(0.05)

numbers

[2, 4, 5, 5, 0, 9, 7,0.05]

We can also use + operator to combine two lists. This is also called concatenation.
fruit =[“Apple”, “Orange”, “Guava”]

veggies = [“Cabbage”, “Brinjal”, “Pumkin”]

combo= fruit + veggies

combo

[“Apple”, “Orange”, “Guava”,“Cabbage”, “Brinjal”, “Pumkin”]

The * operator repeats a list for the given number of times.
In [18]: repeatlist = [“mean”,”variance”,25,”67”]

 print(repeatlist*3)

[“mean”,”variance”,25,”67”,“mean”,”variance”,25,”67”,“mean”,”variance”,25,

”67”]

We can insert one item at a desired location by using the method insert() or insert multiple

items by squeezing it into an empty slice of a list.

Temp = [“mean”, “variance”,25,”67”]

 Temp.insert(-1,”std deviation”)

 Temp

[‘mean’,’variance’,25,’std deviation’,’67’]

Temp = [“mean”, “variance”,25,”67”]

 Temp[3:3]=[0,1,2]

 Temp

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

17

ISBN 978-93-80788-93-7

[‘mean’,’variance’,25,0,1,2,’67’]

Deleting and removing elements from the list

my_list=['p','r','o','b','l','e','m']

del my_list[2]

my_list

['p','r','b','l','e','m']

my_list=['p','r','o','b','l','e','m']

del my_list[1:5]

my_list

['p','e','m']

In [33]: my_list = ['p', 'r','o','b,'l','e','m']

 del my_list

 my_list

Traceback(most recent call last):

 File"<ipython-input-33-f3fbb10993a>", line 3 ,in <module>

 my_list

NameError: name 'my_list' is not defined

We can use remove() method to remove the given item or pop() method to remove an item

at the given index and clear() to completely remove all elements.
my_list=['p','r','o','b','l','e','m']

my_list.remove('p')

my_list

['r','o','b','l','e','m']

my_list=['p','r','o','b','l','e','m']

my_list.pop(1)

my_list

['p','o','b','l','e','m']

my_list=['p','r','o','b','l','e','m']

my_list[2:4]=[]

my_list

['p','r','l','e','m']

my_list=['p','r','o','b','l','e','m']

my_list.clear()

my_list

[]

Other built in functions for list:
count()

vowels=['a','e','i','o','u']

vowels.count('i')

2

sort()

vowels=['e','a','u','o','i']

vowels.sort()

vowels

['a','e','i','o','u']

reverse()
months = ["January", "February", "March","April","May"]

months.reverse()

months

["May","April","March","February","January"]

Some Basic Operations-Dictionary:
my_dict= {} #empty dictionary

my_dict={1:'apple',2: 'ball'} #dictionary with integer keys

my_dict

{1: 'apple',2: 'ball'}

my_dict={'name':'John' , 1:[2,4,3]} #dictionary with mixed keys

my_dict

{'name':'John' , 1:[2,4,3]}

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

18

ISBN 978-93-80788-93-7

my_dict = dict({1:'apple',2:'ball'}) # using dict()

my_dict

{1:'apple',2:'ball'}

my_dict = {'name': 'Jack','age':26} #slicing of dictionaries

my_dict['name']

'Jack'

my_dict.keys() #get a list of all the keys

dict_keys

(['name','age'])

my_dict.values() #get a list of all the values

dict_values

(['Jack',26])

Adding and Changing elements in a Dictionary
my_dict = {'name': 'Jack','age':26}

my_dict['age']=27

my_dict

{'name':'Jack','age':27}

my_dict = {'name': 'Jack','age':26}

my_dict['Hobby']="Singing"

my_dict

{'name':'Jack','age':26,'Hobby':'Singing'}

del keyword to remove individual items or the entire dictionary itself. All the items can be

removed at once using the clear() method.
alphabets= {"a":11, "b":24, "c":32, "d":42, "e":16}

del alphabets["a"]

alphabets

{'b': 24, 'c': 32, 'd': 42, 'e': 16}

alphabets= {"a":11, "b":24, "c":32, "d":42, "e":16}

a1phabets.c1ear()

a1phabets

{}

In [21]: a1phabets = {"a":11, "b":24, "c":32, "d"":42, "e":16}

 de1 a1phabets

 a1phabets

Traceback (most recent ca11 1ast):

 Fi1e "<ipython-input-21-ed02c88cdd03>", 1ine 3, in <modu1e>

 a1phabets

NameError: name 'alphabets' is not defined

The update() method inserts the specified items to the dictionary.
car= {

"brand": "Ford",

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

19

ISBN 978-93-80788-93-7

"model": "Mustang",

"year": 1964

}

car.update({"color": "White"})

car

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964, 'color': 'White'}

Python Advance Operations-List and Dictionary:

Membership test for List and Dictionary

Dictionary
In [25]: squares = {1: 1, 3: 9, 5: 25,

7: 49, 9: 81}

 print(1 in squares)

 print(2 not in squares)

 print (49 in squares)

True

True

False

List
In [26]: my_list = ['p', 'r', 'o',

'b', 'l', 'e', 'm']

 print('p' in my_list)

 print(' a' in my_list)

 print('c' not in my_list)

True

False

True

Iterating over List and Dictionaries

Dictionary
In [27]: thisdict = {

 "Name": "Kartik",

 "College": "K.C.college",

 "Qualification": "B.sc"

 }

 for x in thisdict:

 print(x)

Name

College

Qualification

In [29]: thisdict = {

 "Name": "Kartik",

"College":

"K.C.college",

 "Qualification": "B.sc"

 }

 for x, y in

thisdict.items():

 print(x,y)

Name Kartik

College K.C.college

Qualification B.sc

In [30]: thisdict = {

"Name": "Kartik",

 "College": "K.C.college",

 "Qualification": "B.sc"

 }

 for x in thisdict:

 print(thisdict[x])

Kartik

K.C.college

B.sc

List
In [31]: for fruit in ["apple","banana","mango"]:

 print(fruit)

apple

banana

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

20

ISBN 978-93-80788-93-7

mango

Python Advance Operations – Strings:

Slicing of String
In [4]: string= "Hello world"

print(string[0])

print(string(-1])

print(string[2:7])

H

d

llo w

In [5]: strinc = "Hello world"

print(strinc[25])

Traceback (most recent call last):

File"<ipython-input-5-cd88bcd3b787>"

,line 2,in <module>

print(string[25])

IndexError: string index out of range

String Concatenation
a= "Hello"

b = "World"

a + b

"HelloWorld"

a= "Hello"

b = "World"

a + " " + b

'Hello World'

profession= "Developer"

txt= "My name is John, I am a" + profession

txt

"My name is John, I am a Developer"

The format() method takes the passed arguments, formats them, and pass them inside the

placeholders {}.
In [10]: profession = “Analyst”

 txt = “My name is John, I am a {}”

 print(txt.format(profession))

My name is John, I am a Analyst

Name= "Shakir Khan"

Exp= 5

Hobby= "Reading Books"

text= "I am {}. I am working in TCS since last{} years, I like{}."

text.format(Name, Exp, Hobby)

'I am Shakir Khan. I am working in TCS since last5 years, I like Reading Books.'

To check if a certain phrase or character is present in a string, we can use the keywords in or

not in.
txt = “The rain in Spain stays mainly in the plain”

x=”ain” in txt

x

True

Built in functions of strings
strip() lower()

txt = "####### Goa Beaches##" txt = "STRINGS"

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

21

ISBN 978-93-80788-93-7

txt.strip("#")

' Goa Beaches '

txt.lower()

'strings'

replace() upper()

txt= “ #GOA #Beaches #BestTemples

#AwesomeSeafood "

newtxt = txt.replacec("#","")

newtxt

'GOA Beaches BestTemples AwesomeSeafood’

txt = "strings"

txt.upper()

'STRINGS'

split()
txt = "Mean|Median|Mode|Geometric mean|Arithmetic mean"

newtxt = txt.sp1it("|")

newtxt

['Mean', 'Median', 'Mode', 'Geometric mean', 'Arithmetic mean']

count()
txt = "I love apples, apple are my favorite fruit"

x = txt.count("apple")

x

2

join() isdigit()

mytuple = ("John","Peter","Vicky")

x = "_".join(mytuple)

x

'John_Peter_Vicky'

txt = "50800"

x = txt.isdigit()

x

True

Escaping single quotes
In [21]: print('He said "what\'s there?"')

He said,"What's there?"

Escaping double quotes
In [22]: print('He said "\what's there?\"')

He said,"What's there?"

partition()
In [23]: txt = "I could eat Oranges all day"

 x= txt.partition("Oranges")

 print(x)

('I could eat',''Oranges','all day')

In [24]: txt = "I could eat Oranges all day"

 x= txt.partition("Apples")

 print(x)

('I could eat Oranges all day','','')

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

22

ISBN 978-93-80788-93-7

2.4 Introduction to Pandas

Pandas is an open-source Python Library providing high-performance data manipulation

and analysis tool using its powerful data structures. It is fast, flexible, and expressive data

structures designed to make working with 'relational' or 'labeled' data both easy and

intuitive. It aims to be the fundamental high-level building block for doing practical, real

world data analysis in Python.

2.5 Basics of pandas Module

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

23

ISBN 978-93-80788-93-7

Slicing of Dataframe with Pandas

Advance Operations with Pandas

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

24

ISBN 978-93-80788-93-7

Join / Concatenation

Pandas provide various facilities for easily combining together Series or DataFrame with

various kinds of set logic for the indexes and relational algebra functionality in the case of

join / merge-type operations. Here are the different types of the Joins:

Inner Join: Returns records that have matching values in both tables

Left Join: Returns all records from the left table, and the matched records from the right table

Right Join: Returns all records from the right table, and the matched records from the left

table

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

25

ISBN 978-93-80788-93-7

Full Join: Returns all records when there is a match in either left or right table

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

26

ISBN 978-93-80788-93-7

Concatenation using Pandas

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 2 – Functions, Modules, Advanced Operations and Pandas in Python

27

ISBN 978-93-80788-93-7

Importing and Exporting Dataframes

The pandas I/O API is a set of top level reader functions accessed like pd.read_csv() that

generally return a pandas object. The corresponding writer functions are object methods that

are accessed like df.to_csv()

2.6 References

1. https://www.programiz.com/python-programming

2. https://www.tutorialspoint.com/python/index.htm

3. https://www.w3resource.com/python/python-tutorial.php

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 3 – Optimisation Strategy in Python- I

28

ISBN 978-93-80788-93-7

Chapter 3

Optimisation Strategy in Python- I

(Linear Programming Problem and Integer

Programming Problem using pulp code)

Dr. Asha Jindal, Associate Professor and Head, Department of Statistics,

 K. C. College

The objective of pulp is to allow an Operations Research programmer to express Linear

Programming (LP), and Integer Programming (IP) models in python in a way similar to the

conventional mathematical notation or framework. Pulp will also solve these problems using

a variety of free and non-free LP solvers. This Chapter is aimed to provide opportunity to

python programmer who may wish to use pulp in their code in the simplified form.

3.1 Introduction

Operations Research (O.R.) is the discipline of applying advanced analytical methods to help

to make sound and effective decisions. The particular area of operations research where pulp

is useful for the development and modelling of Linear Programming (LP) and Integer

Programming (IP) problems. Mathematically, an LP problem is a point in an n-dimensional

linearly constrained region that maximises a given linear objective function. Integer

Programming is an LP where the solution must contain discrete variables which take an

integer value at the solution.

Solve the following Linear Programming Problem:

Maximize Z = 20x + 30y

Subject to

x + 2y ≤ 100

2x + y ≤ 100

x , y ≥ 0

Solution

To carry out this Analysis one has to install pulp library and steps are as follows:

1. Go to search in start button and type Anaconda Prompt which will open the window.

2. Type pip install pulp and press Enter key

3. Installation process will begin and it will complete in approximately 2 minutes depends

on speed of Internet.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 3 – Optimisation Strategy in Python- I

29

ISBN 978-93-80788-93-7

In [9]: import pulp

 #Create Lp Maximization Problem

 prob=pulp.LpProblem('maximizeProfit',pulp.LpMaximize)

 #create a variable x>=0

 x=pulp.LpVariable("x",lowBound=0)

 #create another variable y>=0

 y=pulp.LpVarible("y",lowBound=0)

 prob+=20*x+30*y #objective function

 prob+=1*x+2*y<=100 #Constraint 1

 prob+=2*x+1*y<=100 #Constraint 2

 prob

Out [9]: maximizeProfit

 MAXIMIZE

 20*x + 30*y + 0

 SUBJECT TO

 _c1: x + 2y <= 100

 _c2: 2x + y<= 100

 VARIABLES

 x Continuous

 y Continuous

In [18]: prob.solve()

 pulp.value(x),pulp.value(y),pulp.value(prob.objective)

Out [18]:

(33.333333, 33.333333, 1666.6666500000001)

Note: Decisions Variables are not integers. So, LPP is solved in the form of IPP by adding

category argument in defining variables.
In [19]: import pulp

 #Create Lp Maximization Problem

 prob=pulp.LpProblem('maximizeProfit',pulp.LpMaximize)

 #create a variable x>=0

 x=pulp.LpVariable("x",lowBound=0, cat=('Integer'))

 #create another variable y>=0

 y=pulp.LpVarible("y",lowBound=0, cat=('Integer'))

 prob+=20*x+30*y #objective function

 prob+=1*x+2*y<=100 #Constraint 1

 prob+=2*x+1*y<=100 #Constraint 2

 prob

Out [19]:maximizeProfit:

 MAXIMIZE

 20*x + 30*y + 0

 SUBJECT TO

 _c1: x + 2y <= 100

 _c2: 2x + y<= 100

 VARIABLES

 0 <= x Integer

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 3 – Optimisation Strategy in Python- I

30

ISBN 978-93-80788-93-7

 0 <= y Integer

In [20]: prob.solve()

 pulp.value(x),pulp.value(y),pulp.value(prob.objective)

Out [20]:

(32.0,34.0,1660.0)

3.2 References

1. Python Tutohttps://www.py4e.com/lessons

2. https://amzn.to/2VmpDwK

3. https://amzn.to/2GQSV3D

https://amzn.to/2VmpDwK

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 4 – Optimisation Strategy in Python- II

31

ISBN 978-93-80788-93-7

Chapter 4

Optimisation Strategy in Python-II

(Dynamic Programming)

Principal Dr. C. S. Kakade, Anandibai Raorane Arts, Commerce & Science College,

Vaibhavwadi

4.1 Introduction

Python is one of the most popular and fastest growing languages nowadays. It is probably

the best alternative for C++ and Java. It serves you with the requisite speed, leverages easy

readability and also ensures shorter codes. Developers from the remotest corners of the

world are embracing the presence of Python.

Python is currently the most widely used multi-purpose, high-level programming language.

It allows programming in Object-Oriented and Procedural paradigms. The programs

generally are smaller than other programming languages like Java. Programmers have to

type relatively less and indentation requirement of the language, makes them readable all

the time. Python language is being used by almost all tech-giant companies like – Google,

Amazon, Facebook, Instagram, Dropbox, Uber etc.

Some examples of real-world Python use:

➢ Quora is mostly Python based.

➢ Snapchat is almost entirely Python based.

➢ Instagram heavily uses Python.

➢ YouTube is served for the most part by a Python app.

➢ Facebook uses Python in several backend applications.

➢ Many of the start-up and management scripts on Linux use Python (and the WWW is

mainly based on Linux Servers).

➢ Many machine-learning research projects across the world use Python.

4.2 Dynamic Programming

Dynamic programming is a method for solving a complex problem by breaking it down into

a collection of simpler subproblems, solving each of those subproblems just once, and

storing their solutions using a memory-based data structure (array, map, etc). Each of the

subproblem solutions is indexed in some way, typically based on the values of its input

parameters, so as to facilitate its lookup. So, the next time the same subproblem occurs,

instead of recomputing its solution, one simply looks up the previously computed solution,

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 4 – Optimisation Strategy in Python- II

32

ISBN 978-93-80788-93-7

thereby saving computation time. We shall be deep diving into python programming with

the help of an interesting case study.

4.3 Problem statement

Consider a thief gets into a home to rob and he carries a knapsack. There are fixed number

of items in the home, each with its own weight and value. E.g.: Jewellery, with less weight

and highest value v/s tables, with less value but a lot heavy. To add fuel to the fire, the thief

has an old knapsack which has limited capacity. Obviously, he can’t split the table into half

or jewellery into 3/4ths. He either takes it or leaves it. Determine the items which the thief

needs to steal so that the final contents in the knapsack have maximum value.

Consider the following scenario:

Knapsack Max weight: W = 15 (kg)

Total items: N = 5

Values of items: val = [4, 2, 1, 10, 2]

Weight of items: wt = [12, 2, 1, 4, 1]

The way this is optimally solved is using

dynamic programming – solving for smaller

sets of knapsack problems and then

expanding them for the bigger problem.

4.4 Approach

1. The function printknapSack is defined.

2. It takes four arguments: two lists value (val) and weight (wt); total capacity (W) and total

items (n).

3. It prints the maximum value of items that doesn’t exceed capacity in weight.

4. The function creates a table K where K[n][W] will store the maximum value that can be

attained with a maximum capacity of W and using only the first n items.

5. If K[n][W] was already computed before, this value is immediately returned.

6. If i = 0, then 0 is returned.

7. If w = 0, then 0 is returned.

8. If wt[i] > w, then K[i][w] is set to K [i – 1] [w].

9. Otherwise, K[i][w] = (K [i – 1] [w – wt[i]] + val[i]) or K[i][w] = K [i – 1] [w], whichever is

larger.

10. The above computations are done in a python for-loop. Once the table has been

populated, the final solution can be found at the last row in the last column, which

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 4 – Optimisation Strategy in Python- II

33

ISBN 978-93-80788-93-7

represents the maximum value obtainable with all the items and the full capacity of the

knapsack.

Below is the source code of a Python program to solve the 0/1 knapsack problem using

dynamic programming with memorization.

def printknapSack(W, wt, val, n):

 K = [[0 for w in range(W + 1)] for i in range(n + 1)]

 # Build table K[][] in bottom

 # up manner

 for i in range(n + 1):

 for w in range(W + 1):

 if i == 0 or w == 0:

 K[i][w] = 0

 elif wt[i - 1] <= w:

 K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]],

 K[i-1][w])

 else:

 K[i][w] = K[i - 1][w]

 # stores the result of Knapsack

 res = K[n][W]

 print(res)

 w = W

 for i in range(n, 0, -1):

 if res <= 0:

 break

 # either the result comes from the

 # top (K[i-1][w]) or from (val[i-1]

 # + K[i-1] [w-wt[i-1]]) as in Knapsack

 # table. If it comes from the latter

 # one/ it means the item is included.

 if res == K[i - 1][w]:

 continue

 else:

 # This item is included.

 print(wt[i - 1])

 # Since this weight is included

 # its value is deducted

 res = res - val[i - 1]

 w = w - wt[i - 1]

Driver code

val = [4, 2, 1, 10, 2]

wt = [12, 2, 1, 4, 1]

W = 15

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 4 – Optimisation Strategy in Python- II

34

ISBN 978-93-80788-93-7

n = len(val)

printknapSack(W, wt, val, n)

Solution

The maximum value that the knapsack can contain is $15 with item 2, item 3, item 4 and item

5 having weights 2kg, 1kg, 4kg and 1kg respectively. Thus, the thief can steal four items and

obtain maximum value of $15. Analyzing the complexity of the solution is pretty straight-

forward. We just have a loop for W within a loop of n => O (nW).

4.5 References

1. https://www.hackerearth.com/practice/notes/the-knapsack-problem/

2. https://www.techiedelight.com/introduction-dynamic-programming/

3. https://en.wikipedia.org/wiki/Knapsack_problem

4. https://www.quora.com/Where-is-Python-used-in-the-real-world

https://www.techiedelight.com/introduction-dynamic-programming/
https://en.wikipedia.org/wiki/Knapsack_problem
https://www.quora.com/Where-is-Python-used-in-the-real-world

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

35

ISBN 978-93-80788-93-7

Chapter 5

Graphs and Diagrams (2D and 3D using

Python)

Mrs. Pratiksha Kadam, Assistant Professor, Department of Statistics,

K. C. College

In this chapter we are going to learn how to create simple 2D and 3D plots using Python. For

plotting in python we use pyplot module which is stored in Matplotlib package. Also we

need an array of numbers to plot which we import as plt alias. Various array functions are

defined in the NumPy library which is imported with the np alias.

5.1 pyplot Functions

matplotlib.pyplot contains command style functions which make Matplotlib work like

MATLAB. Each pyplot function makes some change to a figure.

Following table shows the pyplot function for specific types of plots:

bar Bar plot

barh Horizontal bar plot

boxplot Box plot/ Whisker plot

hist Histogram

pie Pie chart

plot Lines and markers to the

axes

scatter Scatter plot

stackplot Stacked area plot

stem Stem plot

step Step plot

quiver 2D field of arrows

Following table shows some figure functions:

figure To create a new figure

figtext To add text to figure

show To show the figure

savefig To save the figure

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

36

ISBN 978-93-80788-93-7

Following table shows axis functions:

axes To add axes to the figure

text To add text to the axes

xlabel To set the label for x axis

ylabel To set the label for y axis

xlim To define the limit on x axis

ylim To define the limit on y axis

xscale To set the scaling on axis

yscale To set the scaling on y axis

xticks
To set the tick marks on x

axis

yticks To set the tick marks on y

axis

Also when we create the different plots, instead of line we can use various symbols and

different colours to the plot.

Plot symbols can be: - , –, -., , . , o , ^ , v , < , > , s , + , x , D , d , 1 , 2 , 3 , 4 , h , H , p , | , _

Plot colours can be: b, g, r, c, m, y, k, w (these are the basic colours which can be used). More

colours are also available. Here b represents Blue, g represents Green, r represents Red, c

represents Cyan, m represents Magenta, y represents Yellow, k represents Black and w

represents white. Following example shows sine wave plotting on the domain[0, 2𝜋]. Here

xlabel, ylabel and title represent the label for x axis, label for y axis and the plot title

respectively.

from matplotlib import pyplot as plt

import numpy as np

import math

x=np.arange(0, math.pi*2, 0.05)

y=np.sin(x)

plt.plot(x,y)

plt.xlabel("x")

plt.ylabel("sin x")

plt.title(“sin x”)

plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

37

ISBN 978-93-80788-93-7

Another example of plot function that displays the graph of the function 𝑦 = 𝑥2 on the

domain [-2,2]. Default plot colour is Blue..
from matplotlib import pyplot as plt

import numpy as np

import math

x=np.arange(-2, 2, 0.05)

y=pow(x,2)

plt.plot(x,y)

plt.xlabel("x")

plt.ylabel("x^2")

plt.title(“y=x^2”)

plt.show()

Plot symbols are available in * library which is available in a module called pylab which is a

procedural interface for matplotlib. So in the following illustration, we plot dotted curve with

red dots. The format ‘r.’ in the plot statement specified represents red coloured dotted plot.
from matplotlib import pyplot as plt

import numpy as np

import math

x=np.arange(-2, 2, 0.05)

y=pow(x,2)

plt.xlabel("x")

plt.ylabel("x^2")

plt.title(“y=x^2”)

plot(x,y,'r.')

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

38

ISBN 978-93-80788-93-7

plt.show()

from matplotlib import pyplot as plt

import numpy as np

from pylab import *

import math

x=np.arange(-math.pi, math.pi, 0.05)

plot(x, cos(x), 'r-')

plot(x, sin(x), 'g--')

show()

Multiple plot commands can be used in a single program to plot multiple plots together.

Following example shows graphs of sin 𝑥 and cos 𝑥 on the domain [−𝜋, 𝜋] . Here ‘r-’

represents red continuous line and ‘g--’ represents green dashed line.

5.2 Line Plot

Following example shows the line plots. Line representing y1 is a solid line with blue color

and square markers whereas y2 line is a dashed line with green colour and circle marker.

The add_axes()method is used to add axes to the figure. It requires a list of 4 values

corresponding to left, bottom, width and height of the figure. Each value must be between 0

and 1.

ax.legend, ax.set_title,ax.set_xlabel, ax.set_ylabel are used to add plot legends, plot title, x axis

label and y axis label respectively.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

39

ISBN 978-93-80788-93-7

import matplotlib.pyplot as plt

x = [1,3,5,7,9,11,13,15]

y1 = [1, 16, 30, 42,55, 68, 77,88]

y2 = [1,6,12,18,28, 40, 52, 65]

fig=plt.figure()

ax=fig.add_axes([0,0, 1, 1])

l1=ax.plot(x,y1, 'bs-') # -:solid line b:blue colour s:square marker

l2=ax.plot(x,y2, 'go--")# --:dash Line g:green colour o:circle marker

ax.legend(labels=('yl', 'y2'), loc= ' lower right") # legend placed at lower

right

ax.set_title("Line Chart")

ax.set_xlabel('x')

ax.set_ylabel('y')

plt.show()

5.3 Bar Plot

A Bar chart is a chart or graph that presents categorical data with rectangular bars with

heights proportional to the values that they represent.

bar(x, height[, width, bottom, align])function is used to plot bar diagram, where x represents

category, height represents height of the bar, other three parameters are optional. width

represents width of the bar (default width is 0.8), bottom represents y coordinates of the bar

(by default its none), align represents alignment which can be either center or edge (by

default its center).

In the following example number of students in the divisions A, B, C and D are presented

using bar chart.
import matplotlib.pyplot as plt

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

divs=['A', 'B', 'c', 'D']

students=[23,17,35,29]

ax.bar(divs,students)

plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

40

ISBN 978-93-80788-93-7

5.4 Multiple Bar Plot

Multiple bar charts can be plotted adjusting the thickness and the positions of the bars. In

the following example, the data variable contains three series of three values.

The following script will show three bar charts of three bars. The bars will have a thickness

of 0.25 units. Each bar chart will be shifted 0.25 units from the previous one. The data

contains number of students passed in three subjects (Maths, Stats and Physics) from year

2017 to 2019.
import numpy as np

import matplotlib.pyplot as plt

data=[[30, 25, 50],

[40, 23, 51],

[35, 22, 45]]

X = np.arange(3)

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

ax.bar(X + 0.00, data[0], color= 'b', width 0.25)

ax.bar(X + 0.25, data[1], color='y', width 0.25)

ax.bar(X + 0.50, data[2], color= 'r', width 0.25)

ax.set_xticks([0.25,1.25,2.25])

ax.set_xticklabels([2017,2018,2019])

ax.legend(labels=['Maths', 'Stats', 'Physics'])

plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

41

ISBN 978-93-80788-93-7

5.5 Stacked Bar Chart

This chart represents different groups on top of each other. The height of the resulting bar

shows the combined result of the groups.

The optional bottom parameter of the pyplot.bar() function allows us to specify a starting

value for a bar. So in the following example, in which marks scored by 5 students in maths

and stats are represented by stacked bar plot, where first pyplot.bar() plots the red bars

representing maths marks. The second pyplot.bar() plots the blue bars representing stats

marks, with the bottom as the top of red bars. Data consists of
Maths= (32, 35, 30, 35, 27); Stats= (25, 32, 35, 30, 25)

import numpy as np

import matplotlib.pyplot as plt

N = 5

Maths= (32, 35, 30, 35, 27)

Stats= (25, 32, 35, 30, 25)

ind= np.arange(N) # the x Locations far the groups

width= 0.35

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

ax.bar(ind, Maths, width, color='r')

ax.bar(ind, Stats, width,bottom=Maths, color='b')

ax.set_ylabel('Marks')

ax.set_title('Marks in Maths and Stats')

ax.set_xticks(ind,('A', 'B', 'C', ·o·, 'E'))

ax.set_yticks(np.arange(0, 90, 10))

ax.legend(labels=['Maths', 'Stats'])

plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

42

ISBN 978-93-80788-93-7

5.6 Histogram

It is a representation of a frequency distribution by means of rectangles whose widths

represent class intervals and whose areas are proportional to the corresponding

frequencies.

The command hist() used in the following program plots the histogram for the data given

in array ‘a’ with the class intervals -0-25, 25-50, 50-75 and 75-100. edgecolor and

linewidth parameters are optional which set border-colour of histogram as black and

width of border as 1.2 points.
from matplotlib import pyplot as plt

import numpy as np

fig,ax=plt.subplots(1, 1)

a = np.Array[(22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])

ax.hist(a, bins = [0,25,50,75,100],edgecolor='black', linewidth=l.2)

ax.set_title("histogram of result")

ax.set_xticks([0, 25, 50, 75, 100])

ax.set_xlabel('Marks')

ax.set_ylabel('No. of students')

plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

43

ISBN 978-93-80788-93-7

5.7 Pie Chart

It is a type of graph in which a circle is divided into sectors that each represent a proportion

of the whole.

To draw pie chart, pie() function is used. Colors in the following example are basic colors.

One can use an additional argument colors to specify slice colors. One can also set the

distance between graph and labels, slice distance by using optional arguments labeldistance

and slice distance. So the following code plots a pie chart that displays percentage of number

of students who have secured the grades O, A, B, C and D.

from matplotlib import pyplot as plt

import numpy as np

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

ax.axis('equal')

grade=['O','A','B','C','D']

students=[25,12,32,29,17]

ax.pie(students, labels=grade,autopct='%1.2f%%')

plt.show()

5.8 Scatter Plot

The observations (x,y) that are plotted using Cartesian coordinates is called as a Scatter plot.

To draw scatter plot, scatter() function used with the arguments as values of x array, y array.

An optional argument color is used the the following example to set the point color as blue.

Marks of Mathematics are considered as x array values and Marks of Statistics are

considered as y array values.
import matplotlib.pyplot as plt

Mathematics= [89, 90, 70, 89, 80, 80, 90, 100, 80, 34]

Statistics= [30, 29, 49, 48, 70, 48, 38, 45, 20, 30]

fig=plt.figure()

ax=fig.add_axes([0,0,1,1])

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

44

ISBN 978-93-80788-93-7

ax.scatter(Mathematics, Statistics, color='b')

ax.set_xlabel('Mathematics Marks')

ax.set_ylabel('Statistics Marks')

ax.set_title('Scatter plot')

plt.show()

5.9 3D Line Plot

For 3D plotting we import mplot3d module from mplot3d toolkit. axes() function has an

argument as projection=’3d’ which enables 3 dimensional setup for plotting. plot3d()

function is used with three parameters as x, y and z coordinates. One can use additional

parameter for pattern and color of the line. In the following example, (sin 15z, cos 15z, z) are

plotted where z varies from 0 to 10.

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

fig= plt.figure()

ax= plt.axes(projection='3d’)

z= np.linspace(0, 1, 50)

x = z * np.sin(15 * z)

y = z * np.cos(15 * z)

ax.plot3D(x, y, z, 'g')

ax.set_title('3D line plot')

plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

45

ISBN 978-93-80788-93-7

5.10 3D Scatter Plot

Function scatter() is used to draw the scatter plot. arguments are x, yand z coordinate values.

In the following example, points (sin 15z, cos 15z, z) are plotted where z varies from 0 to 10.
from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

fig= plt.figure()

ax= plt.axes(projection='3d')

z = np.linspace(0, 1, 50)

x = z * np.sin(15 * z)

y = z * np.cos(15 * z)

ax.scatter(x, y, z, 'g')

ax.set_title('3D Scatter plot')

plt.show()

5.11 Contour Plot

To draw contour plot, we use function contour3d(). The input required for this function is 2

dimensional grid. So X,Y in the following example defines grid. cmap arguments represents

color mapping. Binary stands for black and white color mapping. Contour plot of 𝑧 = 𝑥2 +

𝑦2 is plotted using the following code.

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

def f(x, y):

 return x**2+y**2

x = np.linspace(-10, 10, 20)

y = np.linspace(-10, 10, 20)

X, Y = np.meshgrid(x, y)

Z = f(X, Y)

fig= plt.figure()

ax= plt.axes(projection='3d')

ax.contour3D(X, Y, Z, 50, cmap='binary')

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

46

ISBN 978-93-80788-93-7

ax.set_xlabel('x')

ax.set_ylabel('y')

ax.set_zlabel('z')

ax.set_title('3D contour plot: z=x^2+y^2')

plt.show()

5.12 Surface Plot

To plot surface plot, we use plot_surface() function with arguments : x, y, z, cmap. edgecolor

is an optional argument. Following example plots the surface 𝑧 = sin 𝑥. cos 𝑦. Here colour

theme viridis is used. There are many other themes like ‘BrBG’, ‘twilight_shifted’, ‘jet’ etc. No

edgecolor is set.
from mpl_toolkits import mplot3d

import numpy as np

import math

import matplotlib.pyplot as plt

x = np.outer(np.linspace(0, math.pi*2, 30), np.ones(30))

y = x.copy().T # transpose

z = np.sin(x)*np.cos(y)

fig = plt.figure()

ax= plt.axes(projection='3d')

ax.plot_surface(x, y, z,cmap='viridis', edgecolor='none')

ax.set_title('Surface plot')

plt.show()

The following example is a surface plot that represents equation 𝑧 = 𝑥2 + 𝑦2. Here

edgecolor is defines as cyan, so the surface grids are drawn with cyan colored lines.
from mpl_toolkits import mplot3d

import numpy as np

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 5 – Graphs and Diagrams (2D and 3D using Python)

47

ISBN 978-93-80788-93-7

import math

import matplotlib.pyplot as plt

x = np.outer(np.linspace(-2, 2, 30), np.ones(30))

y = x.copy().T # transpose

z = x**2+y**2

fig= plt.figure()

ax= plt.axes(projection='3d')

ax.plot_surface(x, y, z,cmap='viridis', edgecolor='c')

ax.set_title('Surface plot')

plt.show()

5.13 References

1. Matplotlib. (2016). Tutorials Point.

2. Zhong, Y. (2019, July 18). Beyond data scientist: 3d plots in Python with examples.

Retrieved from https://medium.com: https://medium.com/@yzhong.cs/beyond-data-

scientist-3d-plots-in-python-with-examples-2a8bd7aa654b

https://medium.com/@yzhong.cs/beyond-data-scientist-3d-plots-in-python-with-examples-2a8bd7aa654b
https://medium.com/@yzhong.cs/beyond-data-scientist-3d-plots-in-python-with-examples-2a8bd7aa654b

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 6 – Factorization of a Polynomial over a Finite Field

48

ISBN 978-93-80788-93-7

Chapter 6

Factorization of a Polynomial over a Finite

Field

Mrs. Mrunal Hardikar, Assistant Professor, Department of Mathematics,

K. C. College

6.1 Introduction

Finding roots of polynomials or “solving algebraic equations” was the old problem in

mathematics. With the developments in abstract algebra, innovative techniques have

developed for finding roots of polynomials over a field. Factorizing large integers is a hard

problem. In fact, some techniques in cryptography are based on this fact. However, there is

a beautiful algorithm for factorization of a polynomial over a finite field. This Berlekamp’s

algorithm is based on some basic techniques in linear algebra and field theory. We will start

with some necessary results in finite fields.

A finite field ℱ has characteristic 𝑝 for some prime 𝑝, and hence it is a finite dimensional

vector space over ℱ𝑝(a finite field with 𝑝 elements, isomorphic to ℤ 𝑝ℤ⁄). If the dimension is

𝑛, then ℱ has precisely 𝑝𝑛 elements. We will denote this field by ℱ𝑞 where 𝑞 = 𝑝𝑛.

Let 𝑓(𝑥) be a polynomial of degree 𝑛 over ℱ𝑞. Let 𝑓(𝑥) = 𝑒1𝑒2 ⋯ 𝑒𝑘 be a factorization of 𝑓(𝑥)

in to the prime factors, i.e. each 𝑒𝑖 is irreducible over ℱ𝑞 and deg (𝑒𝑖) ≥ 1. We may assume

that all 𝑒𝑖’s are distinct i.e. 𝑓(𝑥) is square free. This is not the restriction but if 𝑓(𝑥) involves

square, we can make it square-free. We will apply the algorithm for a square-free polynomial

and find out 𝑘 and all 𝑒𝑖′𝑠.

6.2 Square-Free Procedure

A polynomial 𝑓(𝑥) over a field ℱ has a multiple zero in some extension of ℱ if and only if

𝑓(𝑥) and 𝑓′(𝑥) have a common factor of positive degree in ℱ[𝑥] where 𝑓′(𝑥) denotes the

formal derivative of 𝑓(𝑥). We will use this result to make 𝑓(𝑥) square-free as follows:

1. Step 1: Compute 𝑔(𝑥) = gcd(𝑓(𝑥), 𝑓′(𝑥))

2. Step 2: If 𝑔(𝑥) has degree zero then 𝑓(𝑥) is square free and ready for Berlekamp.

3. Step 3: If 𝑓′(𝑥) = 0, then 𝑓(𝑥) is a perfect 𝑝𝑡ℎ power, where 𝑝 is the characteristic of ℱ𝑞.

4. Else if deg (𝑔(𝑥)) ≥ 1 and 𝑓′(𝑥) ≠ 0 then recursively apply square-free procedure to 𝑔

and 𝑓 𝑔⁄ .

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 6 – Factorization of a Polynomial over a Finite Field

49

ISBN 978-93-80788-93-7

Now given polynomial is square free and ready for Berlekamp algorithm.

6.3 Preliminaries from Field Theory

Let 𝐴𝑓 = ℱ𝑞[𝑥]/ < 𝑓 >. This is a vector space over ℱ𝑞 with dimension 𝑛.

Let 𝐵𝑓 = {ℎ ∈ 𝐴𝑓 ∶ ℎ𝑞 ≡ ℎ (𝑚𝑜𝑑 𝑓)}

Define 𝑄𝑓 ∶ 𝐴𝑓 → 𝐴𝑓 by 𝑎(𝑥) ↦ 𝑎(𝑥)𝑞 for each 𝑎(𝑥) in 𝐴𝑓 .

Since ℱ𝑞 is a field of characteristic 𝑝 and 𝑞 = 𝑝𝑛 , (𝑎(𝑥) + 𝑏(𝑥))𝑞 = (𝑎(𝑥))𝑞 + (𝑏(𝑥))𝑞 and

hence 𝑄𝑓 is a linear transformation over 𝐴𝑓 .

Claim: 𝑩𝒇 = 𝒌𝒆𝒓 (𝑸𝒇 − 𝑰)

If 𝑎(𝑥) ∈ 𝐵𝑓, then (𝑄𝑓 − 𝐼)(𝑎(𝑥)) = 𝑄𝑓(𝑎(𝑥)) − 𝐼(𝑎(𝑥)) = (𝑎(𝑥))
𝑞

− 𝑎(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑓)

Hence 𝐵𝑓 ⊆ ker(𝑄𝑓 − 𝐼).

Conversely if 𝑏(𝑥) ∈ ker (𝑄𝑓 − 𝐼), then (𝑄𝑓 − 𝐼)𝑏(𝑥) ≡ 0 (𝑚𝑜𝑑 𝑓) and hence

(𝑏(𝑥))𝑞 ≡ 𝑏(𝑥) (𝑚𝑜𝑑 𝑓) i.e. 𝑏(𝑥) ∈ 𝐵𝑓. Hence the claim.

By Chinese reminder theorem (CRT),

𝐴𝑓 ≅ ℱ𝑞[𝑥]/< 𝑒1 > × ℱ𝑞[𝑥]/< 𝑒2 >× ⋯ × ℱ𝑞[𝑥]/< 𝑒𝑘 >

6.4 Preliminaries from Linear Algebra

Let {1, 𝑥, 𝑥2, ⋯ , 𝑥𝑛−1} be a standard basis for 𝐴𝑓 . Let 𝑀 be a matrix of 𝑄𝑓𝑤. 𝑟. 𝑡. this standard

basis.

We can compute basis of 𝐵𝑓 = ker (𝑄𝑓 − 𝐼) by applying row reduction on 𝑀 − 𝐼.

Claim: Nullity of 𝑸𝒇 − 𝑰 is the number of irreducible factors of 𝒇(𝒙).

By hypothesis, 𝑓(𝑥) = 𝑒1𝑒2 ⋯ 𝑒𝑘

By CRT, 𝐴𝑓 ≅ ℱ𝑞[𝑥]/< 𝑒1 > × ℱ𝑞[𝑥]/< 𝑒2 >× ⋯ × ℱ𝑞[𝑥]/< 𝑒𝑘 >

Hence for each ℎ ∈ 𝐵𝑓, CRT maps sends ℎ to (𝑟1, 𝑟2, ⋯ , 𝑟𝑘)

Since ℎ ∈ 𝐵𝑓, 0 ≡ ℎ𝑞 − ℎ ≡ (𝑟1
𝑞 − 𝑟1, 𝑟2

𝑞 − 𝑟2, ⋯ , 𝑟𝑘
𝑞 − 𝑟𝑘)

Therefore, 𝑟𝑖
𝑞 = 𝑟𝑖, for each 𝑖. So, 𝑟𝑖 ∈ ℱ𝑞 (Again by a result in finite field: ℱ𝑞is a spitting field

of a polynomial 𝑥𝑞 − 𝑥).

Hence, 𝐵𝑓 = ker(𝑄𝑓 − 𝐼) ≅ ℱ𝑞
𝑘. i.e. dim(𝐵𝑓) = 𝑘.

Therefore, Nullity of 𝑄𝑓 − 𝐼 is the number of irreducible factors of 𝑓(𝑥).

That means, now we can find number 𝑘 by row reduction on 𝑀 − 𝐼. It remains to find the

actual irreducible factors.

For each ℎ ∈ 𝐵𝑓, 𝑓(𝑥) = ∏ [gcd(𝑓, ℎ − 𝑐)]𝑐∈ℱ𝑞
. (Note that, LHS divides RHS and vice versa)

Hence for each ℎ ∈ 𝐵𝑓 with deg ℎ > 0, there exists 𝑐 ∈ ℱ𝑞 such that 𝑔 = gcd (𝑓, ℎ − 𝑐) ≠ 1.

Such 𝑔 is a non-trivial factor of 𝑓.

6.5 Worked Example

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 6 – Factorization of a Polynomial over a Finite Field

50

ISBN 978-93-80788-93-7

Let 𝑓(𝑥) = 𝑥5 + 𝑥4 + 1 be a square-free polynomial overℤ/2ℤ. We need to find a polynomial

ℎ(𝑥) such that ℎ𝑞 ≡ ℎ (𝑚𝑜𝑑 𝑓).

We can represent given polynomial by 110001. (Listing the coefficients in order)

Now we can represent 𝑥0, 𝑥2 etc as follows

𝑥0 ≡ 00001 (𝑚𝑜𝑑 𝑓)

𝑥2 ≡ 00100 (𝑚𝑜𝑑 𝑓)

𝑥4 ≡ 10000 (𝑚𝑜𝑑 𝑓)

𝑥6 ≡ 10011 (𝑚𝑜𝑑 𝑓)

𝑥8 ≡ 11111 (𝑚𝑜𝑑 𝑓)

Let ℎ = 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0.

ℎ2 = 𝑎4𝑥8 + 𝑎3𝑥6 + 𝑎2𝑥4 + 𝑎1𝑥2 + 𝑎0 , over the field of characteristic 2 .

Now write the matrix 𝑀 and reduce (𝑀 − 𝐼) to row echelon form with basis of the kernel

(1,1,1,0,0) and (0,0,0,0,1)

Hence ℎ1 is 11100 and ℎ2 is 00001

gcd (𝑓, ℎ1) is 111 and gcd (𝑓, ℎ1 + 1) is 1011

Hence required factorization is 𝑥5 + 𝑥4 + 1 = (𝑥2 + 𝑥 + 1)(𝑥3 + 𝑥 + 1) over ℤ/2ℤ.

[Note that 110001 = 111 ∙ 1011]

Now the Python program to find such factorization will be as follows:

from nummpy.polynomial import Polynomial as P

import numpy as np

from numpy.linalg import matrix_rank

import fractions

p=np.array([1,0,1,1,1])

p1=np.array([1])

p2=np.array([1,O,O])

p3=np.array([1,0,0,0,0])

p4=np.array([1,0,0,0,0,0,0])

al=np.abaolute(np.polydiv(p1,p)[1])[::-1].tolist()

a2=np.abaolute(np.polydiv(p2,p)[1])[::-1].tolist()

a3=np.abaolute(np.polydiv(p3.p)[1])[::-1].tolist()

a4=np.abaolute(np.polydiv(p4.p)[1])[::-1].tolist()

for i in range (len(a4)-len(al)):

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 6 – Factorization of a Polynomial over a Finite Field

51

ISBN 978-93-80788-93-7

 al.append(0)

for i in range (len(a4)-len(a2)):

 a2.append(0)

for i in range (len(a4)-len(a3)):

 a3.append(0)

for i in range (len(a4)-len(a4)):

 a4.append(0)

x=np.array([a1,a2,a3,a4])

y=np.absolute(x-np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]))

print (y)

r=matrix_rank(y)

print(r)

6.6 References

1. Abstract Algebra (Second Edition) by David S. Dummit and Richard M. Foote.

2. The Berlekamp Algorithm by John Kerl, 2009 Integration Workshop.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

52

ISBN 978-93-80788-93-7

Chapter 7

Descriptive Statistics

Mr. Shubham Niphadkar, Assistant Professor, Department of Statistics,

K. C. College

7.1 Introduction

Descriptive Statistics deals with description and understanding of data and its features with

the help of short summaries about the sample and measures of the data. The basic two types

of descriptive statistics are:

➢ Measures of central tendency

➢ Measures of dispersion

7.2 Measures of Central Tendency

Central representative value of the entire data is referred to as measure of central tendency.

The various measures of central tendency are as follows:

1. Mathematical Averages:

a) Arithmetic mean

b) Geometric mean

c) Harmonic mean

2. Positional Averages:

a) Partition Values

➢ Median

➢ Quartiles

➢ Deciles

➢ Percentiles

b) Mode

For Raw Data:

𝑥𝑖 is the value of ith observation, i=1,2, …, n and 𝑛 is the size of the data.

Mathematical Averages

Arithmetic Mean (A.M.) Geometric Mean (G.M.) Harmonic Mean (H.M.)

𝐴. 𝑀. =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛

𝐺. 𝑀. = (∏ 𝑥𝑖

𝑛

𝑖=1

)

1/𝑛

𝐻. 𝑀. =

𝑛

∑
1
𝑥𝑖

𝑛
𝑖=1

Positional Averages

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

53

ISBN 978-93-80788-93-7

We will assume that the data is arranged in ascending or descending order.

Median

If size of the data, 𝑁, is odd, 𝑀𝑒𝑑𝑖𝑎𝑛 = 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 (
𝑁+1

2
)

𝑡ℎ

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

If size of the data, 𝑁, is even, 𝑀𝑒𝑑𝑖𝑎𝑛 =
(𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 (

𝑁

2
)

𝑡ℎ
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛+𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 (

𝑁

2
+1)

𝑡ℎ
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)

2

Quartiles Deciles Percentiles

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖 (
𝑁

4
)

𝑡ℎ

 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛,

𝑖 = 1, 2, 3

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖 (
𝑁

10
)

𝑡ℎ

 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛,

 𝑖 = 1, 2, … , 9

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖 (
𝑁

100
)

𝑡ℎ

 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛,

𝑖 = 1, 2, … , 99

Mode: The value which occur maximum number of times is the mode.

For ungrouped frequency distribution:

𝑥𝑖 is the ith observation and 𝑓𝑖 is the frequency of ith observation. 𝑁 = ∑ 𝑓𝑖
𝑛
𝑖=1 .

Mathematical Averages

Arithmetic Mean (A.M.) Geometric Mean (G.M.) Harmonic Mean (H.M.)

𝐴. 𝑀. =
∑ 𝑓𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑓𝑖
𝑛
𝑖=1

𝐺. 𝑀. = (∏ 𝑥𝑖

𝑓𝑖

𝑛

𝑖=1

)

1/𝑁

𝐻. 𝑀. =

𝑁

∑
𝑓𝑖

𝑥𝑖

𝑛
𝑖=1

Positional Averages

Median

If 𝑁 is odd, 𝑀𝑒𝑑𝑖𝑎𝑛 = 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 (
𝑁+1

2
)

𝑡ℎ

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

If 𝑁 is even, 𝑀𝑒𝑑𝑖𝑎𝑛 =
(𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 (

𝑁

2
)

𝑡ℎ
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛+𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 (

𝑁

2
+1)

𝑡ℎ
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)

2

Quartiles Deciles Percentiles

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖 (
𝑁

4
)

𝑡ℎ

 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛,

𝑖 = 1, 2, 3

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖 (
𝑁

10
)

𝑡ℎ

 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛,

 𝑖 = 1, 2, … , 9

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖 (
𝑁

100
)

𝑡ℎ

 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛,

𝑖 = 1, 2, … , 99

Mode: The value with maximum frequency is the mode.

For grouped frequency distribution:

𝑥𝑖 is the class mark of ith class, 𝑓𝑖 is the frequency of ith class. 𝑙1 is the lower boundary of the

class, 𝑙2 is the upper boundary of the class, 𝑓 is the frequency of the class and 𝑐𝑓 is the

cumulative frequency less than 𝑙1.

Mathematical Averages

Arithmetic Mean (A.M.) Geometric Mean (G.M.) Harmonic Mean (H.M.)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

54

ISBN 978-93-80788-93-7

𝐴. 𝑀. =
∑ 𝑓𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑓𝑖
𝑛
𝑖=1

𝐺. 𝑀. = (∏ 𝑥𝑖

𝑓𝑖

𝑛

𝑖=1

)

1/𝑁

𝐻. 𝑀. =

𝑁

∑
𝑓𝑖

𝑥𝑖

𝑛
𝑖=1

Positional Averages

For calculating median, quartiles, deciles, percentiles and mode, we will be dealing with,

median class, 𝑄𝑖 class, 𝐷𝑖 class, 𝑃𝑖 class and modal class respectively.

Median: 𝑀𝑒𝑑𝑖𝑎𝑛 = 𝑙1 + (𝑙2 − 𝑙1) (
𝑁

2
− 𝑐𝑓) /𝑓

Quartiles Deciles Percentiles

𝑙1 + (𝑙2 − 𝑙1) (
𝑖𝑁

4
− 𝑐𝑓) /𝑓,

 𝑖 = 1, 2, 3

𝑙1 + (𝑙2 − 𝑙1) (
𝑖𝑁

10
− 𝑐𝑓) 𝑓⁄

𝑖 = 1, 2, … , 9

𝑙1 + (𝑙2 − 𝑙1) (
𝑖𝑁

100
− 𝑐𝑓) 𝑓⁄

𝑖 = 1, 2, … , 99

Mode: 𝑀𝑜𝑑𝑒 = 𝑙1 + (𝑙2 − 𝑙1) (𝑑1) (𝑑1 + 𝑑2)⁄

𝑑1 = 𝑓𝑚 − 𝑓0, 𝑑2 = 𝑓𝑚 − 𝑓1, 𝑓𝑚 is the frequency of the modal class, 𝑓0 is the frequency of the

class preceding to the modal class and 𝑓1 is the frequency of the class succeeding to the modal

class.

7.3 Measures of Dispersion

The representative value of the data which is used to represent the spread or scatterness of

data is referred to as measure of dispersion. The various measures of dispersion are as

follow:

1. Range

2. Quartile Deviation

3. Mean Deviation about ‘a’

4. Variance

5. Standard Deviation

6. Skewness and Kurtosis

Range:

The range for a data is defined as the difference between maximum value and minimum

value. The corresponding relative measure of dispersion is coefficient of range.

𝑅𝑎𝑛𝑔𝑒 = 𝑀𝑎𝑥 𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛 𝑉𝑎𝑙𝑢𝑒
𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑟𝑎𝑛𝑔𝑒

=
𝑀𝑎𝑥 𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛 𝑉𝑎𝑙𝑢𝑒

𝑀𝑎𝑥 𝑉𝑎𝑙𝑢𝑒 + 𝑀𝑖𝑛 𝑉𝑎𝑙𝑢𝑒

Quartile Deviation (Q.D.):

The quartile deviation is half of the range of values within the quartiles. The corresponding

relative measure of dispersion is coefficient of quartile deviation.

𝑄. 𝐷. = (𝑄3 − 𝑄1)/2 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑄. 𝐷. =
𝑄3 − 𝑄1

𝑄3 + 𝑄1

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

55

ISBN 978-93-80788-93-7

Mean Absolute Deviation (M.A.D.):

For raw data For ungrouped and

grouped frequency

distribution

Relative measure:

𝑀. 𝐴. 𝐷. 𝑎𝑏𝑜𝑢𝑡 ′𝑎′

=
∑ |𝑥𝑖 − 𝑎|𝑛

𝑖=1

𝑛

𝑀. 𝐴. 𝐷. 𝑎𝑏𝑜𝑢𝑡 ′𝑎′

=
∑ 𝑓𝑖|𝑥𝑖 − 𝑎|𝑛

𝑖=1

∑ 𝑓𝑖
𝑛
𝑖=1

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑀. 𝐴. 𝐷.

=
𝑀. 𝐴. 𝐷. 𝑎𝑏𝑜𝑢𝑡 ′𝑎′

𝑎

Variance:

For raw data For ungrouped and grouped frequency distribution

𝜎2 =
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

𝑛
 𝜎2 =

∑ 𝑓𝑖(𝑥𝑖 − �̅�)2𝑛
𝑖=1

∑ 𝑓𝑖
𝑛
𝑖=1

If the denominator in the above cases is ′𝑛 − 1′ or ′ ∑ 𝑓𝑖
𝑛
𝑖=1 − 1′ , then it is referred to as

sample variance.

Standard Deviation (S.D.):

The square root of variance is called as standard deviation. The corresponding relative

measure of dispersion is coefficient of variation. 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑆.𝐷.

�̅�
× 100

Skewness and Kurtosis:

Lack of symmetry is called as skewness. The corresponding relative measure of dispersion

is coefficient of skewness.

Karl Pearson’s Bowley’s Based on Moments (𝜷𝟏)

𝑀𝑒𝑎𝑛 − 𝑀𝑜𝑑𝑒 𝑄3 + 𝑄1 − 2𝑄2 𝜇3
2 𝜇2

3⁄

Coefficient of Skewness

Karl Pearson’s (𝑺𝑲𝑷) Bowley’s (𝑺𝑲𝑩) Based on Moments (𝜸𝟏)

(𝑀𝑒𝑎𝑛 − 𝑀𝑜𝑑𝑒)

𝑆. 𝐷.

(𝑄3 + 𝑄1 − 2𝑄2) (𝑄3 − 𝑄1)⁄ ±√𝛽1

If 𝛾1 > 0, then the data is positively skewed. If 𝛾1 < 0, then it is negatively skewed. If 𝛾1 = 0,

then the data is symmetric.

Kurtosis gives the idea about the flatness or peakedness. It is given by,

𝜷𝟐 =
𝝁𝟒

𝝁𝟐
𝟐

 , 𝜸𝟐 = 𝜷𝟐 − 𝟑

If 𝛽2 > 3 𝑜𝑟 𝛾2 > 0, then the frequency curve is leptokurtic. If 𝛽2 < 3 𝑜𝑟 𝛾2 < 0, then the

frequency curve is platykurtic. If 𝛽2 = 3 𝑜𝑟 𝛾2 = 0, then the frequency curve is mesokurtic.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

56

ISBN 978-93-80788-93-7

7.4 Examples

1. For the following data representing the average rainfall in every month in the year 2017,

find arithmetic mean, geometric mean, harmonic mean. Also find, median, 1st quartile, 4th

decile, 87th percentile and mode. Also find range, quartile deviation, mean deviation

about median, mean deviation about mean, variance, standard deviation, sample

variance, sample standard deviation and their coefficients.

Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Rainfall (in mm) 10 10 10 10 11 560 640 520 320 70 20 15

In [1]:import numpy as np

 import scipy.stats as stats

 import statistics

 rainfall=[10,10,10,11,560,640,520,320,70,20,15]

 #arithmetic mean

 am=np.average (rainfall)

 print ("Arithmetic Mean :", am)

Arithmetic Mean: 183.0

In [2]:#Geometric Mean

 gm=stats.gmean (rainfall)

 print ("Geometric Mean:",gm)

Geometric Mean: 47.671751500797924

In [3]:#Harmonic Mean

hm=stats.hmean (rainfall)

 print("Harmonic Mean:",hm)

Harmonic Mean: 19.039828944815717

In [4]: #Median

median=statistics.median (rainfall)

print ("Median:",median)

Median:17.5

In[5] : # First Quartile

 q1=np.quantile(rainfall,0.25)

 print("First Quartile:",q1)

 #Fourth Quartile

 d4=np.quantile (rainfall,0.4)

 print("Fourth Decile:",d4)

 #87 th Percentile

 p87=np.quantile(rainfall,0.87)

 print ("87 Percentile:", p87)

 First Quartile:10.0

 Fourth Decile :12.600000000000001

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

57

ISBN 978-93-80788-93-7

 87th Percentile:542.8

In [6] :#Mode

 mode=statistics.mode(rainfall)

 print ("Mode:",mode)

 # For multiple mode use statistics.multimode() in phyton 3.8

 Mode: 10

In [7] :import pandas as pd

 #Range

 r=max(rainfall)-min(rainfall)

 print("Range:",r)

 #Coefficient of Quartile Deviation

 print ("Coefficient of Range :",crange)

 Range: 630

 Coefficient Of Range : 0.9692307692307692

In [8] : #Quart:iie Deviation

 q1=np.quantile(rainfall ,0.25)

 q2=np.quantile(rainfall ,0.5)

 q3=np.quantile(rainfall ,0.75)

 qd-(q3-q1)/2

 pr1nt("Quartile Deviation:", qd)

 #Coefficient of Quartiie Deviation

 cqd=(q3-q1)/(q3+q1)

 print("coefficient of Quartile Deviation:"cqd)

 Quartile Deviation: 180.0

 Coefficient of Quartile Deviation: 0.9473684210526315

In [9]: #Mean Absolute Deviation about Median

 mad_median=np.average(np.absolute(no.substract(rainfall,statistics.m

 edian(rainfall))))

 print ("Mean Absolute Deviation about Median:",mad_median)

 #Coefficient of Mean Absolute Deviation about Median

 cmad_median=mad_median/statistics.median(rainfall)

 print ("Coefficient of Mean Absolute Deviation about

 Median:",cmad_median)

 Mean Absolute Deviation about Median:172.0

 Coefficient of Mean Absolute Deviation about Median:9.82857142857143

In [10] : #Mean Absolute Deviation about mean

 series=pd.Series (rainfall)

 print ("Mean Absolute Deviation about Mean:",mad_mean)

 #Coefficient of Mean Absolte Deviation about Mean

 cmad_mean=mad_mean/np.average(rainfall)

 print("Coefficient of Mean Absolute Deviation about Mean:",

 cmad_mean

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

58

ISBN 978-93-80788-93-7

 Mean Absolute Deviation about Mean : 218.0

 Coefficient of Mean Absolute Deviation about Mean:

 1.1912568306010929

In [11] : #Population variance

 pvar=statistics.pvariance (rainfall,np.average (rainfall))

 print("Variance:" , pvar)

 #Population standard deviation

 psd=statistics.pstdev(rainfall,np.average(rainfall))

 print("Standard Deviation:",psd)

 #Sample Variance.

 svar=statistics.variance(rainfall,np.average(rainfall))

 print("Standard Variance:", svar)

 #Sample standard deviation

 psd=statistics.variance (rainfall,np.average(rainfall))

 print("Sample Standard Deviation:", ssd)

 #Population coefficient of variation

 pcv=psd/np.average(rainfall)*100

 print("coefficient of variation:", pcv)

 #Sample coefficient of variation

 scv=ssd/np.average(rainfall)*100

 print("Sample Coefficient of Variation:,' scv)

2. For the following data representing the distribution of weight of 50 students in a class.

Find arithmetic mean, geometric mean, harmonic mean. Also find, median, 2nd quartile,

8th decile, 5th percentile and mode. Also find range, quartile deviation, mean deviation

about median, mean deviation about mean, variance, standard deviation, sample

variance, sample standard deviation and their coefficients.

Weight (in kg) 42 46 50 54 58 62 66

No. of

Students

3 7 14 11 8 5 2

In [1]:import statistics

 import pandas as pd

 import scipy. stats as stats

 import numpy as np

 data= {'Weight': [42,46,50,54,58,62,66], 'Numbar':

 [3,7,14,11,8,5,2]}

 df=pd.DataFrame (data)

 a=list(np.array(df['Weight']).repeat(df['Numbar']))

In [2]:#Arithmetic Mean

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

59

ISBN 978-93-80788-93-7

 am=up,average(a)

 print ("Arithmetic Mean:" ,am)

 Arithmetic Mean: 41.5

In [3]: #Geometric Mean

 gm=stats.gmean(a)

 print ("Geometric Mean:" ,gm)

 Geometric Mean: 52.96

In [4]:#Harmonic Mean

 hm=stats.hmean(a)

 print ("Harmonic Mean:" ,hm)

 Harmonic Mean: 52.62458543450998

In [5]: #Median

 median=statistics.median(a)

 print ("Median:" ,median)

 Median: 54.0

In [6]: # Second Quartile

 q2=np.quantile(a,0.5)

 print(“Second Quantile:”,q2)

 #Eighth Decile

 d8=np.quantile(a,0.8)

 print(“Eight decile:”,d8)

 #5th percentile

 p5=np.quantile(a,0.05)

 print(“5th Percentile:”,p5)

 Second Quantile: 54.0

 Eight Quantile: 58.0

 5th percentile: 43.800000000000000004

In [7]: #Mode

 mode=statistics.mode(a)

 print("Mode:", mode)

 #For multiple mode use statistics.multimode() in Phython 3.8

 Mode: 50

In [8]: #Range

 r=max(a) -min(a)

 print("Range:", r)

 #Coefficient of Range

 crange=(max(a)- min(a)) / (max(a) +min (a))

 print ("Coefficient of Range:", crange)

 Range: 24

 Coefficient of Range: 0.22222222222222

In [9] : #Quartile Deviation

 q1=np.quantile (a,0.25)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

60

ISBN 978-93-80788-93-7

 q2=np.quantile (a,0.5)

 q3=np.quantile(a,0.75)

 print("Quartile Deviation:" ,qd)

 #Coefficient of Quartile Deviation

 cqd=(q3-q1)/(q3+q1)

 print("Coefficient of Quartile Deviation:", cqd)

 Quartile Deviation:4.0

 Coefficient of Quartile Deviation: 0.07407407407407407

In [10] : #Mean Absolute Deviation about Median

 mad_median=ap.average(np.absolute(np.subtract(a,median(a)))

 #Coefficient of Mean Absolute Deviation about Median

 print ("Mean Absolute Deviation about Median: ", mad_ median)

 cmad _ median=mad _ median/statistics.median (a)

 print ("Coefficient of Mean Absolute Deviation about Median: ",

 cmad_median)

 Mean Absolute Deviation about Median: 6.142857142857143

 Coefficient of Mean Absolute Deviation about Median:

 0.09037037037037037036

In [11] : #Mean Absolute deviation about Mean

 series=pd.Series(a)

 mad_mean=series.mad ()

 print("Mean Absolute Deviation about mean:", mad_mean

 cmad_mean=mad_mean/np.average (a)

 print("Coefficient of Mean Absolute Deviation about Mean:" ,

 cmad_mean)

 Mean Absolute Deviation about Mean:4.921599999999999

 Coefficient of Mean Absolute Deviation about Mean:

 0.9293051359516614

In [12] : #Population variance

 pvar=statistics.pvariance(a,np.average(a))

 print("Variance:", pvar)

 #Population standard deviation

 psd=statistics.pstdev(a,np.average(a))

 print ("Standard Deviation:" , psd)

 #Sample Variance

 svar=statistics.variance (a,np.average(a))

 print ("Sample Variance:", svar)

 #Sample standard deviation

 ssd=statistics.variance(a,np.average (a))

 print ("Sample Standard Deviation:",ssd)

 #Population coefficient of variation

 pcv=psd/np.average(a) *100

 print ("Sample Coeffcient of Variation:", scv)

 Variance: 35.7184

 Standard Deviation : 5.97648726598233

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

61

ISBN 978-93-80788-93-7

 Sample Variance: 36.44734693877551

 Sample Standard Deviation : 6.0371663815797573

 Coefficient of Variation:11.28490797973184145

 Sample Coefficient of Variation: 11.399478504149496

3. Consider the following data:

Age (in years) No. of employees (f)

20-25 1

25-30 3

30-35 6

35-40 10

40-45 14

45-50 9

50-55 5

55-60 2

Find arithmetic mean, geometric mean, harmonic mean. Also find, median, 1st quartile, 6th

decile, 25th percentile and mode. Also find range, quartile deviation, mean deviation about

median, mean deviation about mean, variance, standard deviation, sample variance, sample

standard deviation and their coefficients. Also calculate measure and coefficient of skewness

and kurtosis.

In [1] :import statistic

 import panda as pd

 import scipy.stats as stats

 import numpy as np

 data={'Age in years']: ['20-25,25-30,30-35,35-40,40-45,45-50,50-

 55,55-60'], 'f':[1,3,6,10,14,9,5,2]}

 df=pd.DataFrame(data)

 #Lover boundaries

 l1=list(range(20,60,5))

 #Upper Boundaries

 u1=list(range(25,65,5))

 #Class Marks

 cm=np.divide(np.add(l1,u1),2)

 #Cumulative Frequencies

 series=pd.series(df['f'])

 cmf=series.cumsum()

 a=list(np.array(cm).repeat(df['f']))

In [2]:#Arithmetic Mean

 am=np.average(a)

 print ("Arithmetic Mean:" ,am)

 Arithmetic Mean: 41.5

In [3]:#Geometric Mean

 gm=stats.gmean(a)

 print ("Geometric Mean:" ,gm)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

62

ISBN 978-93-80788-93-7

 Geometric Mean: 40.71854614513001

In [4]:#Harmonic Mean

 hm=stats.hmean(a)

 print ("Harmonic Mean:" ,hm)

 Harmonic Mean: 39.88120004143535

In [5]:#Median

 med=sum(df['f'])/2

 med_class=list(cumf).index(min(cumf[cumf>med]))

 median=ll [med_class] + (ul[med_class]) * (sum(df['f'])/2-cumf[med-

 class-1])/df['f'] [med_class]

 print ("Median:" ,median)

 Median: 41.785714285714285

In [6]: #First Quartile

 q=sum(df['f'])/4

 q_class=list(cumf).index(min(cumf[cumf>q]))

 q1=ll [q_class]+(ul[q_class] - (ll[q_class]) * (sum(df['f'])/4-

 cumf[q_-class-1])/df['f'] [q_class]

 print("First Quartile:" ,q1

 First Quartile :36.25

In [7]: #Sixth Decile

 d=6*sum(df['f'])/10

 d_class=list (cumf).index(min(cumf[cumf>d]))

 d6=ll[d_class]+(ul[d_class]-ll[d_class])*(6*sum(df['f'])/10-

 cumf[d_class-1])df['f'][d_class]

 print ("Sixth Decile:",d6)

 Sixth Decile: 43.5714285714857

In [8]:#25 Percentile

 p=25*sum(df['f'])/100

 p=class=list(cumf).index(min(cumf[cumf>p]))

 p25=ll[p_class]+(ul[p_class]-ll[p_class])*(25*sum(df['f'])/100-

 cumf[p_class-1])df['f'][p_class]

 print ("25th Percentile:",p25)

 25th Percentile : 36.25

In [9]: #Mode

 m=max (df['f'])

 m_class=list(cumf).index(min(cumf[cumf>p]))

 d1=df [' f '] [m_class] - df [' f '] [m_class-1]

 d2=df [' f '] [m_class] - df [' f '] [m_class+1]

 mode=ll[m_class]+(ul[m_class]-ll[m_class])*(d1/(d1+d2))

 print ("Mode:", mode)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

63

ISBN 978-93-80788-93-7

 Mode:42.22222222222222

In [10]: #Range

 a=list(np.array(cm).repeat (df[' f ']))

 r=max(ul)-min(ll))/(max(ul)+min(ll))

 print ("Range:" , r)

 #Coefficient of Range

 crange=(max(ul)-min(ll))/(max(ul)+min(ll))

 print("Coefficient of Range:", crange)

 Range: 40

 Coefficient of Range: 0.5

In [11]:#Quartile Deviation

 q=sum(df['f']) /4

 q_class=list(cumf).index(min(cumf(cumf>q]))

 q1=ll[q_class]+(ul[q_class]-ll(q_class])*(sum(df('f')/4-

 cumf[q_class-1])/df['f'][q_class]

 qa=3*sum(df['f']))/4

 qa_class-list(cumf).index(ll(cumf[cumf>qa]))

 q3=ll[qa_class]+(ul[qa class]-ll(qa class])*(3*sum(df['f'])/4-

 cumf(qa_class-1))/df['f'][qa_class]

 qd=(q3-q1)/2

 print("Quartile Deviation:", qd)

 #Coefficient of Quartile Deviation

 cqd=(q3-q1)/(q3+q1)

 print("Coefficient of Quartile Deviation:", cqd)

 Quartile Deviation: 5.347222222222221

 Coefficient of Quartile Deviation: 0.12854757929883137

In [12]: #Mean Absolute Deviation about Median

 mad_median=np.average(np.absolute(np.subtract(a,median)))

 #Coefficient of Mean Absolute Deviation about Median

 print ("Mean Absolute Deviation about Median: ", mad_ median)

 cmad _ median=mad _ median/median

 print ("Coefficient of Mean Absolute Deviation about Median: ",

 cmad_median)

 Mean Absolute Deviation about Median: 6.14285714285714 3

 Coefficient of Mean Absolute Deviation about Median: 0.147008547008547

In [13]:#Mean Absolute Deviation about Mean

 series1=pd.Series(a)

 mad_mean=series1.mad()

 print("Mean Absolute Deviation about Mean:",mad_mean)

 #Coefficient of Mean .Absolute Deviation about Mean

 cmad_mean=mad_mean/np.average(a)

 print("Coefficient of Mean Absolute Deviation about Mean:",

 cmad_mean)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

64

ISBN 978-93-80788-93-7

 Mean Absolute Deviation about Mean: 6.2

 Coefficient of Mean Absolute Deviation about Mean:

 0.1493975903614458

In [14]: # Population variance

 pvar=statistics.pvariance(a,np.average(a))

 print("Variance:", pvar)

 #Population standard deviation

 psd=statistics.pstdev(a,np.average(a))

 print ("Standard Deviation:" , psd)

 #Sample Variance

 svar=statistics.variance (a,np.average(a))

 print ("Sample Variance:", svar)

 #Sample standard deviation

 ssd=statistics.variance(a,np.average (a))

 print ("Sample Standard Deviation:",ssd)

 #Population coefficient of variation

 pcv=psd/np.average(a) *100

 print ("Sample Coeffcient of Variation:", scv)

 Variance: 61.0

 Standard Deviation : 7.810249675967590664

 Sample Variance: 62.244897959183675

 Sample Standard Deviation : 7.889543581905186

 Coefficient of Variation : 18.81987873712447

 Sample Coefficient of Variation: 19.01094839447033

In [15]:from scipy.stats import skew,kurtosis

 #Karl Pearsons measure of skewness

 karl_skew=(am-mode)

 print("Karl Pearsons measure of skewness:", karl_skew)

 #Bowleys measure of skewness

 bowl_skew=q3+q1-2*median

 print("Bowleys measure of skewness:", bowl_skew)

 Karl Pearsons measure of skewness: -0.7222222222222214

 Bowleys measure of skewness: -0.37698412698412653

In [16]: #Karl Pearsons of skewness based on moments

 b1=pow(skew (a) ,2)

 print("Karl Pearsons coefficient of skewness:", skp)

 #Bowleys coefficient of skewness

 skb=bowl_skew/(q3-q1)

 print("Coefficient of skewness based on moments:",skb)

 Karl Pearsons coefficient of skewness: -0.09247107995153589

 Coefficient of skewness based on moments: -0.035250463821892355

In [17]: #Measure of skewness based on moments

 b1=pow(skew(a),2)

 print("Measure of skewness based on moments:", b1)

 #Coefficient of skewness based on moments

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 7 – Descriptive Statistics

65

ISBN 978-93-80788-93-7

 c1=skew(a)

 print("coefficent of skewness based on moments:", c1)

 Measure of skewness based on moments: 0.019191033610742744

 Coefficent of skewness based on moments: -0.13853170615690383

In [18]: #Measure of kurtosis based on moments

 b2=kurtosis(a)+3

 print("Measure of kurtosis based on moments:", b2)

 #Coefficient of kurtosis based on moments

 c2=kurtosis(a)

 print("Coefficent of kurtosis based on moments:", c2)

 Measure of kurtosis based on moments: 2.705993012631013

 Coefficent of kurtosis based on moments: -0.294006987368987

7.5 References

1. https://www.tutorialspoint.com/python_pandas/python_pandas_descriptive_statistics.htm

2. https://www.investopedia.com/terms/d/descriptive_statistics.asp

3. https://en.wikipedia.org/wiki/Descriptive_statistics

4. https://statistics.laerd.com/statistical-guides/descriptive-inferential-statistics.php

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

66

ISBN 978-93-80788-93-7

Chapter 8

Correlation, Regression and Curve Fitting

Mr. Pritesh Patil, Assistant Professor, Department of Statistics, Kirti College

8.1 Correlation and Regression

When bivariate data are typically organized in a graph can be called as scatter plot. A scatter

plot has two dimensions, a horizontal dimension (called the x-axis) and a vertical dimension

(called the y-axis).

The pattern and direction of the relationship between X and Y can be seen from the scatter

plot. The strength of the relationship between two numerical variables depends on how

closely the data resemble a certain pattern. Correlation coefficient is used to measure the

strength and direction of the linear relationship between two numerical variables X and Y.

Once we find a linear pattern in the scatter plot, and the correlation between the two

numerical variables is moderate to strong, we can create an equation that allows you to

predict one variable using the other. This equation is called as simple linear regression line.

Generally Y is called as the depended variable and X is called as the independent variable.

The simple linear regression is given by, 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑒𝑖, where, Y is dependent variable,

X is independent variable, β0 is intercept, β1 is slope and e is error term.

Ordinary Least Squares (OLS) is the most common estimation method for linear models.

Ordinary least squares (OLS) regression is a statistical method of analysis that estimates the

relationship between one or more independent variables and a dependent variable; the

method estimates the relationship by minimizing the sum of the squares in the difference

between the observed and predicted values of the dependent variable.

Examples:

1. Plot the Scatter diagram from the following pairs of values. Find the correlation

coefficient and covariance between the sales (Rs. Lakhs) and expenses (Rs. Lakhs)

from the data given below :

Sales 50 50 55 60 65 65 65 60 60 50

Expenses 11 13 14 16 16 15 15 14 13 13

Also, calculate the regression equation of Sales on expenses.

Solution
In [1]:import numpy as np

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

67

ISBN 978-93-80788-93-7

 import pandas as pd

 import matplotlib.pyplot as plt

 x=np.array([50,50,55,60,65,65,60,60,50])

 y=np.array([11,13,14,16,16,15,15,14,13,13])

 plt.scatter(x, y)

 plt.title ('scatterplot')

 plt.xlabel (' Sales ')

 plt.ylabel (' Expenses ')

 plt.show ()

In [2]: np.cov(x,y) #covariance

Out [2]: array ([[40., 7.77777778],

 [7.77777778, 2.44444444]])

In [3]:data=('Sales':[50,50,55,60,65,65,60,60,50], 'Expenses' :[11,13,14,

 16,16,15,15,14,13,13])

 df = pd.DataFrame(data)

 df

In [4] : df.corr(method='pearson')

In [5] : df.corr(method='spearman')

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

68

ISBN 978-93-80788-93-7

In [6] : df.corr(method='kendall')

In [7]: #To test the signifance of correlation coefficient

 import numpy as np

 import scipy.stats

 x=np.array([50,50,55,60,65,65,65,60,50])

 y=np.array([11,13,14,16,16,15,15,15,14,13,13])

 scipy.stats.pearsonr(x, y)

Out [7]: (0.7865665062071158, 0.006954016570582233)

In [8]: scipy.stats.spearmanr(x,y)

Out [8]: SpearmanrResult (coorelation = 0.7975307304350421, pvalue=

 0.005712188346423168

In[9]: scipy.stats.kendalltau(x,y)

Out[9]:KendalltauResult (coorelation = 0.7975307304350421, pvalue=

 0.012577800357482053)

Conclusion

H0: Sales(x) and Expenses(y) are not significantly correlated

H1: Sales(x) and Expenses(y) are significantly correlated

As, all the p-value in the test for significance i.e. 0.006954016570582246,

0.005712188346423168 and 0.012577800357482053 are less than 0.05 we can reject H0

at 5% level of significance and say Sales(x) and Expenses(y) are significantly correlated.

#Regression
In [10]: import statsmodels.api as sm

 x= sm.add_constant(x)

 #to add the coloumn of 1's to the input if we want statsmodels to

 calculate the intercept b0

 x

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

69

ISBN 978-93-80788-93-7

In [11]: model = sm.OLS (y, x)

 results = model.fit()

 results.summary()

 C:\Users\Admin\anaconda3\lib\site-packages\scipy-

 packages\stats.py:1535: UserWarning: kurtosistest only valid for n>=20

... continuing anyway, n=10

 “anyway, n=%i” %int(n))

Conclusion

From above table we obtain fitted equation as y=2.7222+0.1944*x

Since the value of Adj. R-squared is 0.571=> 57.1% variation in sales is explained by

independent variable expenses.

Test for significance of β0 and β1:

➢ H0: β0=0 against H1: β0≠ 0

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

70

ISBN 978-93-80788-93-7

Since, the p-value is 0.412(from above table) which is greater than 0.05 we do not reject H0

at 5% level of significance i.e., β0 is non-significant.

➢ H0: β1=0 against H1: β1≠ 0

Since, the p-value is 0.007(from above table) which is less than 0.05 we reject H0 at 5% level

of significance i.e., β1 is significant.

In [12]:#Regression (Alternate Solution)

 import numpy as np

 form sklearn.linear_model import LinearRegression

 x = np.array ([50,50,55,60,65,65,65,6560,60,60,50]).reshape((-1, 1))

 y= np.array ([11,13,14,16,16,15,15,14,13,13])

 x

Out [12]: array([[50),

 [50],

 [55],

 [60],

 [65],

 [65],

 [65],

 [60],

 [60],

 [50]])

In [13]: y

Out [13]: array([11, 13, 14, 16, 16, 15, 15, 14, 13, 13])

In [14]:model = LinearRegression()

 model.fit(x, y)

0ut[14]: LinearRegression(copy_x=True,fit_intercept=True,n_jobs=None,

 normalize=False)

In [15] : model - LinearRegression().fit(x, y)

 r_sq = model.score(x, y)

 print('coefficient of determination:', r_sq)

 print ('intercept:' , model.intercept_)

 print ('slope: ' , model.coef_)

 coefficient of determenation: 0.6186868686868685

 intercept: 2.722222222222223

 slope: (0.19444444)

2. Fit a regression equation to the following data

x 1 2 3 4 5

y 20 150 550 1300 2500

Solution
In [1] : import numpy as np

 import statsmodels.api as sm

 x = np.array([1,2,3,4,5])

 y = np.array ([20,150,550,1300,2500])

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

71

ISBN 978-93-80788-93-7

 x=sm.add_constant (x)

 model=sm.OLS(y,x)

 results=model.fit()

 results.summary()

C:\Users\Admin\anaconda3\lib\site-packages\statsmodels\stats\stattools.py:71:

ValueWarning: omni_normtest is not valid with less than 8 observations; 5

samples were given.

"Samples were given." & int(n), ValueWarning)

In [2]: #From above table we obtain fitted equation as y=-929+611*x

 a=-929

 b=611

 import matplotlib.pyplot as plt

 x = np.array ([1,2,3,4,5])

 y = np.array ([20,150,550,1300,2500])

 plt.plot (x,y, 'o')

 plt.xlabel ('x')

 plt.ylabel ('y')

 plt.title ('scatterplot')

 plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

72

ISBN 978-93-80788-93-7

In[3] :plt.plot (x,y, 'o')

 plt.plot (x, a+b*x)

 plt.title ('fitted line plot')

 plt.xlabel ('x')

 plt.ylabel ('y')

 plt.show ()

8.2 Curve Fitting

The relationship between the two variables may not always be linear. Hence if scatter plot

indicates curvilinear relationship we try to fit curvilinear model instead of linear model.

There are many curvilinear models in this chapter we cover following models.

➢ Quadratic curve:

Quadratic curve is given by y=a+bx+cx2.It is second degree polynomial equation.

➢ Power curve:

Power curve is given by y=axb. For simplification, we can write it as log(y)=log(a)+b*log(x).

➢ Exponential curve:

Exponential curve is given by y=abx. For simplification, we can write it as

log(y)=log(a)+x*log(b)

➢ Logarithmic curve:

 Logarithmic curve is given by y=a+b*log(x).

Note: log is Log to the base e. y is dependent variable x is independent variable

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

73

ISBN 978-93-80788-93-7

Examples:

1. Fit a quadratic curve to the following data and estimate y when x=5.

x 1 2 3 4 5

y 35 100 200 30 540

Solution
In [1]: import numpy as np

 from sklearn.preprocessing import PolynomialFeatures

 x = np.array ([1,2,3,4,5])

 y = np.array ([35,100,200,350,540])

 np.polyfit (x,y,2) #2 indicates degree of the polynomial

Out [1]: array ([21.42857143, -2.57142857, 17.])

In [2]: #array ([‘coeeficient2’, ‘coefficient1’, 'intercept '])

 #here b0=17 b1= -2.57142857 and b2=21.4257143

 a=17

 b=-2.57142857

 c=21.42857143

 import matplotlib.pyplot as plt

 plt.plot (x, y, ' o ‘)

 plt.title (‘scatterplot ')

 plt.xlabel (‘x ')

 plt.ylabel (‘y ')

 plt.show ()

In [3]:plt.plot (x,y, ' o ')

 plt.plot (x, a+b*x+c*x**2)

 plt.title(' fitted line plot ')

 plt.xlabel (' x ')

 plt.ylabel (' y’)

 plt.show ()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

74

ISBN 978-93-80788-93-7

In [4]:#when x=5 then y

 y_=a+b*5+c*5**2

 y_

Out [4]: 539.8571429000001

2. Fit a power curve to the following data and estimate y when x=6.

x 1 2 3 4 5

y 20 150 550 1300 2500

Solution
In [1] : import numpy as np

 from sklearn.preprocessing import PolynomialFeatures

 x = np.array ([1,2,3,4,5])

 y = np.array ([20,150,550,1300,2500])

 np.polyfit (np.log (x) ,np.log (y),1)

Out [1] : array ([3.01627884, 2.97400827])

In [2] : m=2. 97400827

 n=3. 01627884

 a=np.exp(m)

 a

Out [2] : 19.57020526822196

In [4] : b=n

 import matplotlib.pyplot as plt

 plt.plot (x,y, ' o ')

 plt.title (' scatterplot ')

 plt.xlabel (' x ')

 plt.ylabel (' y')

 plt.show ()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

75

ISBN 978-93-80788-93-7

In [5]:plt.plot (x,y, 'o')

 plt.plot (x,a*x**b)

 plt.title (' fitted line plot')

 plt.xlabel (' x ')

 plt.ylabel (' y')

 plt.show ()

In [6]: # when x=6 then y

 y_=a*6**b

 y_

Out[6]: 4352.27703479539

3. Fit a exponential curve to the following data:

x 1 3 5 7

y 5 20 100 400

Solution
In [1] : import numpy as np

 from sklearn.preprocessing import PolynomialFeatures

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

76

ISBN 978-93-80788-93-7

 x = np.array ([1,3,5,7])

 y = np.array ([5,20,100,400])

 np.polyfit(x,np.log(y),1)

Out [1] : array ([0.73777589, 0.84934767])

In [2]:slope=0.73777589

 intercept=0.84934767

 a=np.exp (intercept)

 b=np.exp(slope)

 a

Out [2]: 2.3381211277869918

In [3]: b

Out [3]: 2.0912791034618685

In [4]: import matplotlib.pyplot as plt

 plt.plot (x, y, ' o ')

 plt.title (‘scatterplot ')

 plt.xlabel (' x ')

 plt.ylabel ('y’)

 plt.show ()

In [5]:plt.plot (x, y, ‘o’)

 plt.plot (x, a*b**x)

 plt.title (' fitted line plot’)

 plt.xlabel (‘x’)

 plt.ylabel ('y’)

 plt.show ()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

77

ISBN 978-93-80788-93-7

4. Fit a logarithmic curve to the following data

x 20 30 60 100 200 400

y 15 17 20 21 23 24

Solution
In [1]: import numpy as np

 from sklearn.preprocessing import PolynomialFeatures

 x = np.array ([20,30,60,100,200,400])

 y = np.array ([15,17,20,21,23,24])

 np.polyfit (np.log(x),y,1)

Out [1]: array ([2.99213903, 6.84145708])

In [2]: a=6.84145708

 b=2.99213903

In [3]: import matplotlib.pyplot as plt

 plt.plot (x,y, ' o ')

 plt.title (' scatterplot ')

 plt.xlabel (' x ')

 plt.ylabel (' y')

 plt.show ()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 8 – Correlation, Regression and Curve Fitting

78

ISBN 978-93-80788-93-7

In [4]:plt.plot (x,y, 'o')

 plt.plot (x,a+b*np.log(x))

 plt.title (' fitted line plot’)

 plt.xlabel (' x ')

 plt.ylabel (' y’)

 plt.show ()

In [5]: #when x=5 then y

 y_=a+b*np.log(5)

 y_

Out [5]: 11.6571190745794

8.3 References

1. https://realpython.com/numpy-scipy-pandas-correlation-python/

2. https://realpython.com/linear-regression-in-python/

3. Dr Asha jindal (2017), Correlation,Regression and Curve fitting, Dr Asha

jindal(Ed.),Analyzing and visualizing Data with R software-A practical manual, Shailja

Prakashan and K.C. College, Page No:38-48

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

79

ISBN 978-93-80788-93-7

Chapter 9

Probability Distribution

Mr. Sachin Shamrao Bhaskar, Assistant Professor, Department of Statistics, Anandibai

Raorane Arts, Commerce & Science College, Vaibhavwadi

9.1 Plotting using matplotlib

The Python core does not include any tools to generate plots. This functionality is added by

other packages. By far the most common package for plotting is matplotlib. matplotlib is

intended to mimic the style of Matlab. As such, users can either generate plots in the Matlab

style. matplotlib contains different modules and features.

matplotlib.pyplot is the module that is commonly used to generate plots. It provides the

interface to the plotting library in matplotlib, and is by convention imported in Python

functions and modules with import matplotlib.pyplot as plt.

9.2 Probability Distribution

Distribution Command for Distribution p.m.f./p.d.f. c.d.f.

Binomial(n, p) bd=stats.binom(n,p) prob=bd.pmf(x) cdf=bd.cdf(x)

poisson(lm) pd=stats.poisson(lm) prob=pd.pmf(x) cdf=pd.cdf(x)

hypergeometric hgd=stats.hypergeom(N,m,n) prob=hgd.pmf(x) cdf=hgd.cdf(x)

Negative

Binomial(r, p)

nbd=stats.nbinom(r,p) prob=nbd.pmf(x) cdf=nbd.cdf(x)

Uniform(a, b) ud=stats.uniform(a,b) p=ud.pdf(x) cdf=ud.cdf(x)

Exponential(𝜃) ex=stats.expon(𝜃) p=ex.pdf(x) cdf =ex.cdf(x)

Normal(𝜇, 𝜎2) nd=stats.norm(𝜇, 𝜎2) p=nd.pdf(x) cdf=nd.cdf(x)

Lognormal lg=stats.lognorm(m,s) p=lg.pdf(x) cdf=lg.cdf(x,m,s)

Gamma gd=stats.gamma(n,th) p=gd.pdf(x) cdf=gd.cdf(x)

Beta bd=stats.beta(n,th) p=bd.pdf(x) cdf=bd.cdf(x)

Chi-square chi = stats.chi(n) pdf=chi.pdf(x,n) cdf=chi.cdf(x,n)

For Binomial(n, p)
In [1]: import scipy.stats as stats # it import package scipy.stats

 n=5 # it assigns the value of shape parameter

 p=0.5 # it assigns the value of probability of success.

 x=3 # it assign the value of x.

 bd=stats.binom(n,p) # it assigns the value of X

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

80

ISBN 978-93-80788-93-7

 prob=bd.pmf (x) # it calculates P(X=3) of binomial distribution.

 cdf=bd.cdf(x) # it calculates c.d.f of Binomial

 distribution

 print (prob)

 print (cdf)

 0.3125

 0.8125

For Poisson(𝝀)
In [2]:import scipy.stats as stats # it import package scipy.stats.

 lm=3 #it assigns the vakue of parameterλ.

 x=3 # it assigns the value of X.

 pd=stats.poisson(lm) #it assigns the Poisson distribution.

 prob=pd.pmf (x) # it calculates P(X=3) of Poissondistribution.

 print(prob) # it prints P(X=3).

 0.22404180765538775

Negative Binomial(r, p)
In [3]:import scipy.stats as stats # it import package scipy.stats.

 r=4 #it assigns the value of parameter λ.

 p=0.5

 x=3 # it assigns the Poisson distribution

 nbd=stats.nbinom (r,p) #it assigns the Poisson Distribution.

 prob=nbd.pmf(x) #it calculates P(X=3) of Poisson distribution

 print(prob) # it rints P(X=3).

 0.15625000000000017

Lognormal
In [4]: import scipy.stats as stats

 m=3

 s=2 # it assign the value of parameter λ.

 x=3 #it assign the value of X.

 lg=stats.lognorm(m,) # it assigns the log-Normal distribution.

 p=lg.pdf(x) #it calculates probabilities of log-Normal distribution.

 print (p)

 0.0414521374995849

9.3 Random Sample Generation

In python, we can generate random sample of size n from different distributions by using the

following commands. We need to import numpy package after that use the following

commands:

In [5]: import numpy as np

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

81

ISBN 978-93-80788-93-7

 r1=np.random.binomial (8, 0, 4, 10)

 # Sample of size 10 from binomial (8, 0, 4)

 print ("Random numbers are:", r1)

 Random numbers are: [3 3 4 1 4 4 2 2 5 1]

In [6]:r2=np.random.poisson(3.2,10) #sample of size 10 from poisson (3.2)

 print ("Random numbers are:", r2)

 Random numbers are: [4 3 6 4 0 9 2 3 1]

In [7]:r3=np.random.poisson(0,1,10) #sample of size 10 from Normal (0,1)

 print ("Random numbers are:", r3)

 Randoms numbers are: [-0.14398527 -0.00565769 -0.00565769 -

 0.08706065 0.79306237 -0.42853533 -0.01740361

 0.89059493 0.43773545 -0.62410716 1.19725444]

In [8]:r4=np.random.poisson(4,10) #sample of size 10 from exponetial (4)

 print ("Random numbers are:", r4)

 Random Numbers are: [2.84389684 1.4688718 1.904448382 149540771

 2.50115998 3.91341569 0.9126324 0.37868265 0.03613664 3.44497827]

In [9]:r5=np.random.poisson(0,5,10)

 #sample of size 10 from uniform (0,5)

 print ("Random numbers are:", r5)

 Random numbbers are: [3.79425599 4.56937883 3.06672609 2.41885944

 3.16853992 2.79737245 4.7398593 1.3271012 1.57616696 1.07407285]

In [10]:r6=np.random.lognormal(0,1,10)

 #sample of size 10 from logNormal (0,1)

 print ("Random numbers are:", r6)

 Random numbers are: [4.11328901 1.8174152 0.35794728 1.82482682

 1.18830096 0.32319486 2.59994078 0.4198525 1.00776184]

In [11]:r7=np.random.standard_cauchy(10)

 #sample of size 10 from standard_cauchy

 print ("Random numbers are:", r7)

 Random numbers are:[-0.20393381 -0.57215044 -4.74513244 -2.45038412 -

 5.9634032 04568767 70.7991319 -1.20012489 -1.17320447 -1.46330294]

In [12]:r8=np.random.gamma(4,3,10)

 #sample of size 10 from gamma (with shape 4& scale3)

 print ("Random numbers are:", r8)

 Random numbers are : [3.7795373 16.00762641 3.1506161619 17.59847979

 6.40907394 6.29579046 12.04232884 11.35496534 10.43878574

 15.69201329]

In [13]:r9=np,random.beta(4,3,10)

 # sample of 10 from beta(4, 3)

 print ("Random numbers are:", r9)

 Random numbers are: [0.41952739 0.71660687 0.61529927 0.65816305

 0.58354979 0.46716569 0.47045574 0.62504264 0.74208358 0.8324287]

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

82

ISBN 978-93-80788-93-7

In (14): r10=np.random.standard_t (5, 10)

 # Sample of size 10 froam standard_t with 5 d.f.

 print("Random numbers are:", r10)

 Random numbers are: [-0.44883174 1.26886067 -1.1837764 -2.54345885

 0.1525956 -0.11678527 -1.09737212 2.67747062 0.25900981 -1.63502092]

In (15):r11=np.random.chiasquare(5,10)

 # Sample of size 10 froa chisquare with 5 d.f.

 print("Random numbers are:", r11)

 Random number are: [5.8204119 2.02954166 7.92492356 5.37698655

 3.60778101 3.32521995 8.57612513 2.96091453 12.61467725 4.84896307]

9.4 Examples

1. If 𝑋~ (10, 0.6). Find a) 𝑃(𝑋 = 0) b) 𝑃(𝑋 = 2) c) 𝑃(𝑋 ≤ 3) d) 𝑃(𝑋> 5)
In [16]:import numpy as np

 import scipy.stats as stats

 n=10

 p=0.6

 a=np.arrange(n+1)

 bd=stats.binom(n,p)

 prob=bd.pmf (x)

 cdf=bd.cdf(z)

 print ('pmf of x')

 print (prob)

 print (' \n')

 print ('cdf of x')

 print(cdf)

 print ('\n')

 print('P(X=0)=',prob[0])

 print('P(X=2)=',prob[2])

 print('P(X<=3)=',cdf[3])

 print('P(X>5)=',1-cdf[5])

 pmf of x

 [1.04857600e-04 1.57286400e-03 1.06168320e-02 4.24673280e-02

 1.11476736e-01 2.00658125e-01 2.50822656e-01 2.14990848e-01

 1.20932352e-01 4.03107840e-02 6.04661760e-03]

 cdf of x

 [1.04857600e-04 1.67772160e-03 1.22945536e-02 5.47618816e-02

 1.66238618e-01 3.66896742e-01 6.17719398e-01 8.32710246e-01

 9.53642598e-01 9.93953382e-01 1.00000000e+00]

 P(x=<l)= 0.00010485760000000014

 P(x=2)= 0.010616832

 P(X<=3)= 0.05476188160000002

 P(X>5)= 0.6331032576

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

83

ISBN 978-93-80788-93-7

2. If 𝑋~Poisson(3.2). Find a) 𝑃(𝑋 = 0) b) 𝑃(𝑋 = 3) c) 𝑃(𝑋 = 10) d) 𝑃(𝑋 ≤ 1) e) 𝑃(𝑋> 3)

f) (𝑋 ≥ 5)
In [17]:import numpy as np

 import scipy.stats as stats

 L=3.2

 x=np.arrange(11)

 pd=stats.poisson(L)

 prob=bd.pmf (x)

 cdf=pd.cdf(z)

 print ('pmf of x')

 print (prob)

 print (' \n')

 print (' cdf of x')

 print(cdf)

 print (' \n')

 print('P(X=0)=',prob[0])

 print('P(X=2)=',prob[3])

 print('P(X=10)=',prob[10])

 print('P(X<=1)=',prob[10])

 print('P(X>3)='1,cdf[3])

 print('P(X>=5)=',1-cdf[4])

 pd of x

 [0.0407622 0.13043905 0.20870248 0.22261598 0.17809279 0.11397938

 0.060789 0.02778926 0.0111157 0.00395225 0.00126472]

 cdf of x

 [0.0407622 0.17120126 0.37990374 0.60251972 0.78061251 0.89459189

 0.9553809 0.98317016 0.99428586 0.99823811 0.99950283]

 P(x=0)= 0.04076220397836621

 P(x=3)= 0.22261598332718394

 P(x=10)= 0.0012647200634353655

 P(X<=1)= 0.17120125670913808

 P(X>3)= 0.3974802755944429

 P(X>=5)= 0.21938748893269577

3. If 𝑋~𝐻𝑦𝑝𝑒𝑟𝐺𝑒o(𝑁 = 25,𝑀 = 5,𝑛 = 3). Find a) 𝑃(𝑋 = 0) b) 𝑃(𝑋 = 2) c) 𝑃(𝑋 = 5)

d) (𝑋 ≤ 1) e) (𝑋> 3) f) (𝑋 ≥ 2)
In [18] : import numpy as np

 import scipy.stats as stats

 N=25

 m=5

 n=3

 x=np. arange (n+1)

 hgd.stats.hypergeom(N,m,n)

 prob=hgd.pmf(x)

 cdf=hgd. cdf (x)

 print ('pmf of x')

 print (prob)

 print (' \n')

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

84

ISBN 978-93-80788-93-7

 print ('cdf of x')

 print(cdf)

 print (' \n ')

 print('P(X=0)=',prob[0])

 print('P(X=2)=',prob[2])

 print('P(X=5)=',0)

 print('P(X<=1)=',cdf[1])

 print('P(X>3)=',1-cdf[3])

 print('P(X>=2)=',1-cdf[1])

 pmf of x

 (0.49565217 0.41304348 0.08695652 0.00434783]

 cdf of x

 [0.49565217 0.90869565 0.99565217 1.]

 P(x=0)= 0.4956521739130437

 P(x=2)= 0.08695652173913056

 P(x=5)= 0

 P(X<=1)= 0.908695652173914

 P(X>3)= 0.0

 P(X>=2)= 0.09130434782608599

4. Plot probability mass function (pmf) and distribution function for the random variables:

a) 𝑋~Poisson(2.6) b) 𝑋~𝐵𝑖𝑛𝑜(8,0.65) c) 𝑋~𝐻𝑦𝑝𝑒𝑟𝐺𝑒𝑜(𝑁 = 50,𝑀 = 10,𝑛 = 7)
In [19]: import numpy as np

 import scipy.stats as stats

 import matplotlib.pyplot as p1t

 l=2.6

 x=np.arange(10)

 pd=stats.poisson(1)

 prob=pd.pmf(x)

 cdf=pd. cdf (x)

 plt.vlines(x,0,prob)

 plt.title('Plot of probability mass function')

 plt.show()

 plt.step(x,cdf)

 plt.ti.tle('Plot of distribution function')

 plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

85

ISBN 978-93-80788-93-7

a)
In [20]: import numpy as np

 import scipy.stats as stats

 import matplotlib.pyplot as plt

 n=8

 p=0.65

 x=np.arange(10)

 bd-stats.binom(n,p)

 prob=bd.pmf(x)

 cdf-bd. cdf (x)

 plt.vl.nes(x,0,prob)

 plt.title('Plot of probability mass function')

 plt. show()

 plt.step(x,cdf)

 plt.title('Plot of distribution function')

b)
In [21]: import numpy as np

 import scipy.stats as stats

 import matplotlib.pyplot as plt

 N=15

 m=12

 n=10

 x=np.arange (20)

 hgd=stats.hypergeom (N,m,n)

 prob=hgd.pmf(x)

 cdf=hgd.cdf (x)

 plt.vlines(x,0,prob)

 plt.title('Plot of probability mass function')

 plt.show()

 plt.step(x,cdf)

 plt.ti.tle('Plot of distribution function')

 plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

86

ISBN 978-93-80788-93-7

5. A set of similar fair coins are tossed 640 times with the following results:

No. of heads 0 1 2 3 4 5 6

Frequency 7 64 140 210 132 5 12

Fit the binomial distribution to the data.

In [22]:import numpy as np

 import scipy.stats as stats

 import pandas as pd

 N=640

 x=np.array([0,1,2,3,4,5,6))

 f=np.array([7,64,140,210,132,75,12J)

 n=6

 p=0.5

 bd=stats.binom(n,p)

 prob-bd. pmf (x)

 E1=np.round (N*prob)

 data={ 'x' :x, 'freq' :f, 'p(x)' :prob, 'Expected Frequency' :

 E1.astype(int)}

 df=pd.DataFrame (data)

 print(df)

6. Fit a Poisson distribution to the following data with respect to the number of red blood

corpuscles (𝑥) per cell:

𝒙 0 1 2 3 4 5

Number of cells 142 156 69 27 5 1

In [23]: import numpy as np

 import scipy.stats as stats

 import pandas as pd

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

87

ISBN 978-93-80788-93-7

 x=np.array([0,1,2,3,4,5))

 f=np.array([142,156,69,27,5,1))

 N=sum(f)

 l=(x.dot(f))/N

 pdis=stats.poisson(l)

 prob=pdis.pmf(x)

 E=np.round (N*prob)

 data=('x' :x, 'freq' :f, 'p(x)' :prob, 'Expected Frequency'

 :Ei.astype(int))

 df=pd.DataFrame(data)

 print(df)

7. Fit the negative binomial distribution to the following distribution

X 0 1 2 3 4 5

f 213 128 3 18 3 1

In [24]:import numpy as np

 import scipy.stats as stats

 import pandas as pd

 x=np.array([0,1,2,3,4,5))

 f=np.array([213,128,37,18,3,1])

 N=sum(f)

 m=(x.dot(f))/N

 x2=(x*x) .dot(f)

 v=(x2/N)-m**2

 p=m/v

 q=1-p

 r=int(m*p/q)

 nbd=stats.nbinom(r,p)

 prob=pdis.pmf(x)

 E=np.round (N*prob)

 data=('x' :x, 'freq' :f, 'p(x)' :prob, 'Expected Frequency'

 :Ei.astype(int))

 df=pd.DataFrame(data)

 print(df)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

88

ISBN 978-93-80788-93-7

8. If i) 𝑋~𝑁(2,1.5) ii) 𝑋~𝐸𝑥𝑝(𝜃 = 1.5) iii) 𝑋~𝑈(0,5)

Find a) 𝑃(𝑋 = 1.5) b) 𝑃(𝑋 ≤ 1.5) c) P(𝑋 > 3.5) d) 𝑃(0 < 𝑋 < 2) e) 𝑃(−2 < 𝑋 < 2)

i)
In [25]: import numpy as np

 import scipy.stats as stats

 print ('X follows N (2,1.5)')

 m=2; v=1.5

 nd=stats.norm(m,v)

 p=nd.cdf(1.5)

 p1=nd.cdf(1.5)

 p3=nd.cdf(3.5)

 p0=nd.cdf(0)

 p2=nd.cdf(2)

 p_2=nd.cdf(-2)

 print('P(x=1.5)=',p)

 print('P(x<=1,5)=',p1)

 print('P(x>3,5)=',1-p3)

 print('P(0<X<2)=',p2-p0)

 print('P(-2<X<2)=",p2-p_2)

 X follows N(2,1.5)

 P(x=1.5)= 0.2515888184619955

 P(x<=1.5)= 0.36944134018176367

 P(x>3.5)= 0.15865525393145707

 P(0<X<2)= 0.4087887802741321

 P(-2<X<2)= 0.4961696194324103

ii)
In [26]: import numpy as np

 import scipy.stats as stats

 print ('X follows Exp (1.5)')

 m=2; v=1.5

 nd=stats.norm(m,v)

 p=nd.cdf(1.5)

 p1=nd.cdf(1.5)

 p3=nd.cdf(3.5)

 p0=nd.cdf(0)

 p2=nd.cdf(2)

 p_2=nd.cdf(-2)

 print('P(x=1.5)=',p)

 print('P(x<=1,5)=',p1)

 print('P(x>3,5)=',1-p3)

 print('P(O<X<2)=',p2-p0)

 print('P(-2<X<2)=",p2-p_2)

 X follows Exp(l.5)

 P(x=1.5)= 1.0

 P(x<=1.5)= 0.0

 P(x>3.5)= 0.1353352832366127

 P(0<x<2)= 0.3934693402873666

 P(-2<x<2)= 0.3934693402873666

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

89

ISBN 978-93-80788-93-7

iii)
In [27]: import numpy as np

 import scipy.stats as stats

 print ('X follows Uniform (0,5)')

 a=0; b=5

 ud=stats.uniform(a,b)

 p=ud.cdf(1.5)

 p1=ud.cdf(1.5)

 p3=ud.cdf(3.5)

 p0=ud.cdf(0)

 p2=ud.cdf(2)

 p_2=ud.cdf(-2)

 print('P(x=1.5)=',p)

 print('P(x<=1,5)=',p1)

 print('P(x>3,5)=',1-p3)

 print('P(O<X<2)=',p2-p0)

 print('P(-2<X<2)=",p2-p_2)

 X follows Uniform(0,5)

 P(x=1.5)= 0.2

 P(x<=1.5)= 0.3

 P(x>-3.5)= 0.30000000000000004

 P(O<X<2)= 0.4

 P(-2<X<2)= 0.4

9. Find the value of 𝑎, 𝑏, 𝑐 and 𝑑 if 𝑃(𝑋 < 𝑎) = 0.8, 𝑃(𝑋 > 𝑏) = 0.9,

𝑃(𝑋 > 𝑐) = 0.2, 𝑃(𝑋 < 𝑑) = 0.3 for i)𝑋~𝑁(2,1.5) ii) 𝑋~𝐸𝑥𝑝(𝜃 = 1.5) iii) 𝑋~𝑈(0,5)

i)
In [28] : import numpy as np

 import scipy.stats as stats

 print("X follows N(2,1.5)")

 m=2

 v=1.5

 nd=stats.norm(m,v)

 a=nd.ppf(0.8)

 b=nd.ppf(1-0.9)

 c=nd.ppf(1-0.2)

 d=nd.ppf(0.3)

 print(' a=' , a)

 print('b=' ,b)

 print('c= ' , c)

 print("d=" ,d)

 X follows N(2,1.5)

 a= 3.2624318503593717

 b= 0.07767265168309945

 c= 3.2624318503593717

 d= 1.2133992309379387

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

90

ISBN 978-93-80788-93-7

ii)
In [29] : import numpy as np

 import scipy.stats as stats

 print('X follows Exp(0,1)')

 th=1.5

 ex=stats.expon(th)

 a=ex.ppf(0.8)

 b=ea.ppf(1-0.9)

 c=ea.ppf(1-0.2)

 d=ea.ppf (0. 3)

 print(' a=', a)

 print('b=' ,b)

 print('c=' ,c)

 print(' d=', d)

 X follows Exp(0,1)

 a= 3.1094379124341005

 b= 1.6053605156578263

 c= 3.1094379124341005

 d= 1.8566749439387324

iii)
In [30]:import numpy as np

 import scipy.stats as stats

 print('X follows Uniform (a,b)

 a=ud.ppf(0.8)

 b=ud.ppf(1-0.9)

 c=ud.ppf(1-0.2)

 d=ud.ppf (0. 3)

 print(' a=', a)

 print('b=' ,b)

 print('c=' ,c)

 print(' d=', d)

 X follows Uniform

 a= 4.0

 b= 0.4999999999999999

 c= 4.0

 d= 1.5

10. Plot probability density function (pdf) and distribution function for the following random

variables:

i) 𝑿~𝑼(𝟎, 𝟏)
In [31]:import numpy as np

 import scipy.stats as stats

 import matplotlib.pyplot as plt

 print('X follows Uniform (0,1)')

 a=0

 b=1

 x=np.linspace(a,b,100)

 pdf=stats.uniform.pdf(x,a,b)

 cdf=stats.uniform.cdf(x,a,b)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

91

ISBN 978-93-80788-93-7

 plt.plot(x,pdf)

 plt.title('plot of p.d.f')

 plt.show()

 plt.plot(x,cdf)

 plt.title('Plot of c.d.f.')

 plt show ()

 X follows Uniform (0,1)

ii) 𝑿~𝑵(𝟎, 𝟏)
In [32]:import numpy as np

 import scipy.stats as stats

 import matplotlib.pyplot as plt

 import math

 m=0

 v=1

 sd=math.sqrt(v)

 x=np.linspace (m-3*sd,m+3*sd)

 pdf=stats.uniform.pdf(x,m,sd)

 cdf=stats.uniform.cdf(x,m,sd)

 plt.plot(x,pdf)

 plt.title('plot of p.d.f')

 plt.show()

 plt.plot(x,cdf)

 plt.title('Plot of c.d.f.')

 plt show ()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

92

ISBN 978-93-80788-93-7

iii) 𝑿~𝑬𝒙𝒑(𝜽 = 𝟏. 𝟓)
In [33] : import numpy as np

 import scipy.stats as stats

 import matplotlib.pyplot as plt

 th=1.5

 x=np.linspace(0,10,100)

 pdf=stats.expon.pdf (x,th)

 cdf=stats.expon.cdf (x,th)

 plt.plot(x,cdf)

 plt.title('Plot of c.d.f.')

 plt show ()

iv) 𝑿~𝑬𝒙𝒑(𝑴𝒆𝒂𝒏 = 𝟏. 𝟓)
In [34]:import numpy as np

 import scipy.stats as stats

 import matplotlib.pyplot as plt

 m=1.5

 th=1/m

 x=np.linspace(0,10,100)

 pdf=stats.expon.pdf (x,th)

 cdf=stats.expon.cdf (x,th)

 plt.plot(x,pdf)

 plt.title('plot of p.d.f')

 plt.plot(x,cdf)

 plt.title('Plot of c.d.f.')

 plt show ()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

93

ISBN 978-93-80788-93-7

v) 𝐗~𝐆𝐚𝐦𝐦𝐚(𝟐, 𝟏. 𝟓)
In [35] : import numpy as np

 import scipy.stats as stats

 import matplotlib.pyplot as plt

 n=2

 th=1.5

 x=np.linspace(0,10,100)

 pdf=stats.expon.pdf (x,th)

 cdf=stats.expon.cdf (x,th)

 plt.plot(x,pdf)

 plt.title('plot of p.d.f')

 plt show ()

 plt.plot(x,cdf)

 plt.title('Plot of c.d.f.')

 plt show ()

vi) 𝐗~𝐛𝐞𝐭𝐚(𝟐, 𝟏. 𝟓)
In [36] : import numpy as np

 import scipy.stats as stats

 import matplotlib.pyplot as plt

 n=2

 th=1.5

 x=np.linspace(0,10,100)

 pdf=stats.expon.pdf (x,n,th)

 cdf=stats.expon.cdf (x,n,th)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

94

ISBN 978-93-80788-93-7

 plt.plot(x,pdf)

 plt.title('plot of p.d.f')

 plt show ()

 plt.plot(x,cdf)

 plt.title('Plot of c.d.f.')

 plt show ()

vii) 𝐗~𝐂𝐡𝐢 − 𝐒𝐪𝐮𝐚𝐫𝐞(𝟏𝟎)
In [37] :import numpy as np

 import scipy.stats as stats

 import matplotlib.pyplot as plt

 n=10

 x=np.linspace(0,10,100)

 pdf=stats.expon.pdf (x,n)

 cdf=stats.expon.cdf (x,n)

 plt.plot(x,pdf)

 plt.title('plot of p.d.f')

 plt show ()

 plt.plot(x,cdf)

 plt.title('Plot of c.d.f.')

 plt show ()

11. Fit a normal distribution to following data:

Marks
144-150 150-156

156-

162
162-168 168-174 174-180 180-186

No. of

Students

03 12 23 52 61 39 10

In [38]:import numpy as np

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 9 – Probability Distribution

95

ISBN 978-93-80788-93-7

 import pandas as pd

 import scipy.stats as stats

 import matplotlib.pyplot as plt

 ll=np.array([144,150,156,162,168,174,180])

 ul=np.array([150,156,162,168,174,180,186])

 f=np.array([3,12,23,52,61,39,10])

 x=(ll+ul)/2

 k=len(f)

 N=sum(f)

 m=(x.dot(f))/N

 x2=(x*x).dot(f)

 v=(x2/N)-m**2

 sd=np.sqrt (v)

 L1=np.array ([-9999,144,150,156,162,168,174,180,186])

 U1=np.array ([144,155,156,162,168,174,180,186,9999])

 F=np.concatenate (([0] ,f,[0]))

 nd=stats.norm(m,ad)

 cp=nd.cdf(L1)

 p=np.diff(cp)

 p=np.append(p,1-cp[k+1])

 ef=np.round(N*p)

 data={'Lw':L1, 'UP' :U1 'freq':F, 'p(x)':p, 'F(x)':cp, 'Expected

 Frequency':ef.astype (int)}

 df=pd.dataframe(data)

 print (df)

References

1. https://www.investopedia.com/terms/d/descriptive_statistics.asp

2. https://pythonfordatascience.org/descriptive-statistics-python/

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

96

ISBN 978-93-80788-93-7

Chapter 10

Statistical Tests

Ms. Divya Poojari, Tata Consultacy Services, Statistical Programmer

10.1 t-test

It is used to compare two samples to determine if they came from the same population.

What is t-test?

The t-test is a basic test that is limited to two groups. It is also called Student’s T Test

compares two averages (means) and tells you if they are different from each other. The t test

also tells you how significant the differences are; In other words it lets you know if those

differences could have happened by chance.

For Example: Let’s say you have a cold and you try a naturopathic remedy. Your cold lasts a

couple of days. The next time you have a cold, you buy an over-the-counter pharmaceutical

and the cold lasts a week. You survey your friends and they all tell you that their colds were

of a shorter duration (an average of 3 days) when they took the homeopathic remedy. What

you really want to know is, are these results repeatable? A t test can tell you by comparing

the means of the two groups and letting you know the probability of those results happening

by chance. The basic principle is to test the null hypothesis that the means of the two groups

are equal.

Assumptions of t-test:

➢ The population from which the sample has been drawn should be normally distributed.

➢ Underlying variances are equal.

Use of t-test:

It is used when there is random assignment and only two sets of measurement to compare.

http://www.statisticshowto.com/average/
http://www.statisticshowto.com/mean/
http://www.statisticshowto.com/what-is-statistical-significance/
https://explorable.com/what-is-sampling
https://explorable.com/normal-probability-distribution

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

97

ISBN 978-93-80788-93-7

Types of t-tests:

There are three types of t-tests we can perform based on the data at hand:

➢ One sample t-test

➢ Two sample t-test

➢ Paired sample t-test

T-test in Python using SciPy:

1. One sample t-test: The One-sample t test is used to compare a sample mean to a specific

value. The One Sample t-test is a parametric test.

Example:-You have 10 ages and you are checking whether average age is 30 or not.

Null hypothesis: μ=30

Alterntaivehypothesis: μ≠30

Scipy implements this as ttest_1samp

Interpretation:-Our t-statistic value is 0.59, and along with our degrees of freedom (n-1; 9)

this can be used to calculate a pvalue. The p-value in this case is 0.56, which is greater than

the standard thresholds of 0.05 , so we accept the null hypothesis and we can say there is a

no statistically significant difference between the mean of sample and population mean.

2. Two-sample T-test:-A two sample T-test is used to compare the means of two separate

samples.

Example: In the population, what is the difference between the female’s average score and

male’s average score on the test.

Null hypothesis: There is no statistically significant difference in the mean score of male and

female on the test

Alternative hypothesis: There is a statistically significant difference in the mean score of

male and female on the test

Scipy implements this as ttest_ind()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

98

ISBN 978-93-80788-93-7

Interpretation: Our t-statistic value is -2.79 i.e. 2.79, and along with our degrees of freedom

(18) this can be used to calculate a p-value. The p-value in this case is 0.012, which is less

than the standard thresholds of 0.05, so we reject the null hypothesis and we can say there is

a statistically significant difference between the means of female score on the test and male

score on the test

3. Paired sampled t-test: The paired sample t-test is also called dependent sample t-test.

It’s a univariate test that tests for a significant difference between 2 related variables.

Example: To evaluate the blood pressure of 8 patients before and after treatment.

Null hypothesis:-Mean difference between two samples is 0

Alternative hypothesis:-Mean difference between two sample is not 0

Scipy implements the paired t-test as ttest_rel()

Interpretation: Our t-statistic value is 9.39, and along with our degrees of freedom (7) this

can be used to calculate a p-value.

The p-value is 0.0000324, which is far less than below standard thresholds of 0.05, so we

reject the null hypothesis and we can say there is a statistically significant difference in blood

pressure readings before and after treatment.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

99

ISBN 978-93-80788-93-7

10.2 Correlation Test

What is correlation test?

Correlation test is used to evaluate the association between two or more variables and that

is measured on a -1 to 1 scale.

The closer the correlation value is to -1 or 1 the stronger the relationship, the closer to 0, the

weaker the relationship. It measures how change in one variable is associated with change in

another variable.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

100

ISBN 978-93-80788-93-7

The strength of the correlation matters. The closer the absolute value is to -1 or 1, the

stronger the correlation.

Absolute

r value

Strength

0.0 – 0.3 Weak correlation

0.3 – 0.7 Moderate correlation

0.7 – 1.0 Strong correlation

Correlation test:

There are a few common types of tests to measure correlation, they are:

1. Pearson Correlation (r)

2. Spearman Rank Correlation

Each have their own assumptions about the data that needs to be meet in order for the test

to be able to accurately measure the level of correlation. Each type of correlation test is

testing the following hypothesis:

Null hypothesis: There is no relationship between variable 1 and variable 2

Alternative hypothesis: There is a relationship between variable 1 and variable 2

Interpretation: If obtained p-value is less than what it is being tested at, then one can state

that there is a significant relationship between the variables with an alpha level of 0.05.

1. Assumptions for Pearson Correlation test

Pearson correlation test is a parametric test that makes assumption about the data. In order

for the results of a Pearson correlation test to be valid, the data must meet these assumptions:

➢ The sample is independently and randomly drawn.

➢ A linear relationship between the two variables is present.

➢ When plotted, the points form a line and are not curved.

➢ There is homogeneity of variance

2. Assumptions for Spearman Rank Correlation test

The assumptions for Spearman Rank Correlation test are same. The test is a non-parametric

test and the only assumption is there should be a monotonic relationship between the

variables being tested.

Correlation Examples:

The data used for correlation test in this example is:

If there is a significant relationship between the carat and price of diamonds.

Null hypothesis: There is no relationship between carat and diamonds

Alternative hypothesis: There is a relationship between carat and diamonds
#importing required packages

import pandas as pd

import scipy.stats as stats

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

101

ISBN 978-93-80788-93-7

Load data

df=pd.read_csv(“D:correlation.csv”)

#Descriptive Statistics

df[[“carat”, “price”, ‘depth’]].describe()

In [23]: df[[“carat”, “price”, ‘depth’]].describe()

Checking the Assumptions:

➢ Linear Relationship

Using built-in method from pandas to plot a scatter plot to look for a linear relationship.
#Linearity check

df.plot.scatter(“carat”,”price”)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

102

ISBN 978-93-80788-93-7

It appears that there is a linear relationship present- as the carat increases so does the price.

It is a indication of violating the assumption of homoscedasticity between the variables.

➢ Homogeneity of variances

To formally test homogeneity of variances, use the Levene’s test of homogeneity of variances

which is the stats.levene() method from scipy.stats.
#homogeneity of variance check

Stats.levene(df[‘carat’],df[‘price’])

Out [28]: LeveneResult(statistic=40965.26627380512, pvalue=0.0)

Since p-value is less than alpha level 0.05, the Levene’s test for equal variances is significant,

meaning we violate the assumption of homoscedasticity. Given that, the appropriate

correlation test to use would be a non-parametric test such as the Spearman rank correlation.

Different methods of calculating the level of correlation between the variables:

1. Pearson correlation method using scipy.stats.pearsonr()

To conduct the Pearson correlation test using scipy.stats, use the .pearsonr() method.
#Method-1 using Pearson correlation of scipy function

stats.pearsonr(df['carat'],df['price'])

#Method-2 using Pearson correlation of scipy function

df[‘carat’].corr(df[‘price’])

In [35]: stats.pearsonr(df[‘carat’],df[‘price’])

Out[35]: (0.9215913011934768,0.0)

The Pearson correlation indicates there is a statistically significant strong relationship

between the price and carat of a diamond. This method of measuring correlation is not the

measure to use since the data violated the assumption of homoscedasticity of variance.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

103

ISBN 978-93-80788-93-7

2. Spearman rank correlation method using scipy.stats.spearmanr()

Now to conduct non-parametric measure of correlation, which is, better to the relationship

between the carat and price of a diamond. To do this using scipy.stats, use the .spearmanr()

method.

#Method-1 using spearman correlation of scipy function

Stats.spearmanr(df[‘carat’],df[‘price’])

#Method-2 using spearman correlation of scipy function

df[‘carat’].corr(df[‘price’],method= ‘spearman’)

In [33]: stats.spearmanr(df[‘carat’], df[‘price’])

Out [33]: SpearmanrResult(correlation=0.962882798813001, pvalue=0.0)

The Spearman rank correlation method indicates that the correlation is strong and significant

between the size of the carat and the price of the diamond.

3. Kendall Tau correlation method using scipy.stats.kendalltau()

To conduct the Kendall Tau correlation measure using scipy.stats, use the .kendalltau()

method.
#using Kendall Tau correlation of scipy function

stats.kendallutau(df[‘carat’],df[‘price’])

In [34]: stats.kendallutau(df[‘carat’],df[‘price’])

Out [34]: KendalltauResult(correlation=0.8341049107108127, pvalue=0.0)

Using this method, the test indicates that there is a strong, significant correlation between

the size of the carat and the price of the diamond.

10.3 Chi-Square (χ2) Test

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

104

ISBN 978-93-80788-93-7

The Chi-Square test of independence is a statistical test to determine if there is a significant

relationship between 2 categorical variables. In simple words, the Chi-Square statistic will

test whether there is a significant difference in the observed vs the expected frequencies of

both variables. It’s typically used with categorical data such as educational attainment,

colors, or gender.

 Rules to use the Chi-Square Test:

1. Variables are Categorical

2. Frequency is at least 5

3. Variables are sampled independently (The groups being tested must be independent)

The 5 steps in Chi-Square Test:

1. State the hypothesis

Null Hypothesis: There is no relationship between variable one and variable two.

Alternative Hypothesis: There is a relationship between variable one and variable

2. Check the conditions

All the expected counts should >1. Atleast 80% expected counts should >5.

3. Calculate Test statistic and p-value.

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =
𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙 × 𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑇𝑜𝑡𝑎𝑙

𝜒2 = ∑
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

𝐷𝐹 = (𝑅𝑜𝑤𝑠 − 1) × (𝐶𝑜𝑙𝑢𝑚𝑛𝑠 − 1)

4. Decide whether or not the results are statistically significant.

The results are statistically significant if the p-value is less than alpha, where alpha is the

Significance level (usually α =0.05).

5. Interpret results.

P-value less than 0.05, Reject Null Hypothesis & Accept Alternative Hypothesis.

P-value greater than 0.05, Fail to Reject Null Hypothesis & Reject Alternative Hypothesis.

Example of Chi-square using Python:

To check Is there is any relationship between Race and Smoking?

The data that resulted from the survey is summarized in the following table:

#Load Packages

import pandas as pd

from scipy import stats

#Load data file

df_chi =pd.read_csv("D:chi-sq.csv")

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

105

ISBN 978-93-80788-93-7

Solution

Null hypothesis: There is no relationship between Race and Smoking.

Alternative hypothesis: There is a relationship between Race and Smoking

Race has more than 2 values.

Chi-square Test of Independence using crosstab() theSciPy function:

After importing data next step is to format the data into a frequency count table. This is called

a Contingency Table, we can accomplish this by using the pd.crosstab() function in pandas.

To perform this you should have already imported Scipy.stats package.

The chi2_contingency() method conducts the Chi-square test on a contingency table

(crosstab)

#contingency table

contingency_table=pd.crosstab(df_chi[“Race”],df_chi[“Smoking”])

In [20]: print(‘contingency_table :-\n’contingency_table)

Contingency_table:-

Smoking Nsmoke Smoke

Race

 Black 248 41

Caucasian 628 75

hispanic 138 29

other 198 38

Observed Values

Observed_Values = contingency_table.values

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

106

ISBN 978-93-80788-93-7

In [23]: print(“observed Values :-\n”, observed_values)

Observed Values :-

[[240 41]

[620 75]

[130 29]

[190 38]]

Chi-square Test of Independence using chi2_contingency() theSciPy function:

Chi-square test of independence of variables in a contingency table. This function computes

the chi-square statistic and p-value for the hypothesis test of independence of the observed

frequencies in the contingency table observed. The expected frequencies are computed based

on the marginal sums under the assumption of independence.

#Method-1 Calculate Chi-Square Statistics

chisq_output=stats.chi2_contingency(contingency_table)

In [29]: print(“chi_Squre_output :-\n”,chisq_output)

Chi_square_output:-

(9.787819942992163,8.821225883679331798,3,array([[243.27219369,37.72788631],

 [601.68745415, 93.31254585],

 [137.65223771, 21.34776229],

 [197.38811445, 30.61188555]]))

Expected Values

ExpectedValues = chisq_output[3]

print (“chi square output :-\n”chisq_output)

Expected values is calculated for chi-square statistics value in method-2
In [38]: print(‘chi_square_statistics :-\n’,chi_square_stat)

chi_squre_statistics :-

9.707019942092163

Method-2 Calculate Chi-Square Statistics

chi_squared_stat = (((Observed_Values-Expected_Values)**2)/Expected_Values)

 .sum().sum()

Interpretation: The first value (9.707) is the Chi-square value, followed by the p-value

(0.021), then comes the degrees of freedom (3), and lastly it outputs the expected frequencies

as an array. Since all of the expected frequencies are greater than 5, the chi2 test results can

be trusted. We can reject the null hypothesis as the p-value is less than 0.05. Thus, the results

indicate that there is a association between different group of Race and Smoking.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

107

ISBN 978-93-80788-93-7

10.4 Normality Tests

Testing for Normality — Applications with Python:

A normality test is a statistical process used to determine if a sample or any group of data fits

a standard normal distribution. A normality test can be performed mathematically or

graphically.

Assumption for normality:

If Data Is Gaussian:

 Use Parametric Statistical Methods

Else:

 Use Nonparametric Statistical Methods

So you have a dataset and you’re about to run some test on it but first, you need to check for

normality.

For Example:

Parametric Test Non-Parametric Test

Paired t-test Wilcoxon Rank sum Test

One way Analysis of variance Anova Krushkal Wallis Test

There are a range of techniques that you can use to check if your data sample deviates from

a Gaussian distribution (Normal distribution). Below are the three tests you might want to

consider to check the normality on test data:

➢ The Shapiro-Wilk test;

➢ The Anderson-Darling test, and;

➢ The Kolmogorov-Smirnov test.

As well, there are some visual measures to be implemented:

➢ Histogram

➢ QQ Plots

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

108

ISBN 978-93-80788-93-7

Shapiro-Wilk Test:

The Shapiro-Wilk test evaluates a data sample and quantifies if a random sample came from

a normal distribution. The Shapiro-Wilk test is believed to be a reliable test of normality,

although there is some suggestion that the test may be suitable for smaller samples of data,

e.g. thousands of observations or fewer.

Null hypothesis: The data is normally distributed.

Alternative hypothesis: The data is not normally distributed.

Checking normality of data using Shapiro-Wilk test in python

The shapiro() SciPy function will calculate the Shapiro-Wilk on a given dataset. The function

returns both the statistic value calculated by the test and the p-value.
import requires libraries

import pandas as pd

from scipy.stats import shapiro

#sample data set

Data= { 'salary': [100,200,500,300,600,100],

'age': [20,21,26,22,23,24],

'rating': [2.3,4.3,5.0,2.3,4.5,3.5]}

load the data to data frame

df=pd.Dataframe(data)

In [36]: print(df)

 Salary age rating

0 100 20 2.3

1 200 21 4.3

2 500 26 5.0

3 300 22 2.3

4 600 23 4.5

5 100 24 3.5

Assigning x Variable

x=(df[‘salary’])

In [22]: print(x)

0 100

1 200

2 500

3 300

4 600

5 100

normality test

stat, p=shapiro(x)

In [19]: print(stat)

0.8904141783714294

In [20]: print(p)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

109

ISBN 978-93-80788-93-7

0.320363849401474

The example first calculates the test on the data sample, then prints the statistic and

calculated p-value.
#interpret

alpha= 0.05

if p > alpha:

 print(‘Sample looks Gaussian (fail to reject HO)’)

else:

 print(‘sample does not look Gaussian (reject HO)’)

Sample looks Gaussian(fail to reject HO)

Interpretation: The p-value returned is greater than 0.05 and finds that the data is likely

drawn from a Gaussian distribution (Normal distribution).

Anderson-Darling Test:

The test is a modified version of a more sophisticated nonparametric goodness-of-fit

statistical test called the Kolmogorov-Smirnov test. A feature of the Anderson-Darling test

is that it returns a list of critical values rather than a single p-value. This can provide the basis

for a more thorough interpretation of the result.

Null hypothesis: The data is normally distributed.

Alternative hypothesis: The data is not normally distributed.

Checking normality of data using Anderson Darling test for a variable in python

The anderson() SciPy function implements the Anderson-Darling test. It takes as

parameters the data sample and the name of the distribution to test it against. By default, the

test will check against the Gaussian distribution (dist=‘norm’).
Load require package

import scipy.stats as stats

Create the random varibles with mean 5, and sd 3

x_50 = stsats.norm.rvs(loc=5, scale=3, size=50)

This example calculates the statistic on the test data set and prints the critical values.

https://en.wikipedia.org/wiki/Kolmogorovâ�
https://en.wikipedia.org/wiki/Kolmogorovâ�
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anderson.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anderson.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anderson.html

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

110

ISBN 978-93-80788-93-7

Perform the AD test against a normal distribution with

mean=5 and std=5

anderson_results_50= stats.anderson(x_50, dist=’norm’)

In [49]: anderson_results_50

Out[49]:AndersonResult(statistic=0.2166625962964872,critical_values = array

([0.538, 0.613, 0.736,0.858, 1.021]),significance_level=array([15. , 10. , 5.

, 2.5 , 1.]))

Critical values in a statistical test are a range of pre-defined significance boundaries at which

the H0 can be failed to be rejected if the calculated statistic is less than the critical value.

Rather than just a single p-value, the results give us the p-values for various significance

levels [15. , 10. , 5. , 2.5, 1.] so if you’re working with boundaries outside of .05 you can see

those results as well.

Here our p-value for .05 is outside the rejection region of 0.736, meaning we cannot reject

the null hypothesis our data comes from a normal distribution.

Interpretation: We can interpret the results by failing to reject the null hypothesis that the

data is normal since our calculated test statistic is less than the critical value at a chosen

significance level. We can see that at each significance level, the test has found that the data

follows a normal distribution

Visualization of data using Histogram Plot:

A simple and commonly used plot to quickly check the distribution of a sample of data is the

histogram. The plot shows the bins across the x-axis maintaining their ordinal relationship,

and the count in each bin on the y-axis. A histogram can be created using the hist()

matplotlib function. By default, the number of bins is automatically estimated from the data

sample.

The below example demonstrate the histogram plot on the test problem:
#import required packages for plot

from numpy.random imort randn

from matplolib import pyplot

generate univariate observations

Date=5*randn(1000)+50

#givig a title to plot

pyplot.title(“history for normality check”)

naming x-axis

pyplot.xlabel(‘x-axis’)

naming x-axis

pyplot.ylabel(‘y-axis’)

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

111

ISBN 978-93-80788-93-7

#history plot

pyplot.hist(data)

to view the plot

pyplot.show()

This is the histogram plot showing the number of observations in each bin. We can see a

Gaussian-like shape to the data, that although is not strongly the familiar bell-shape, is a

rough approximation.

Visualization of data using QQ plots (Quantile-Quantile Plot):

Another popular plot for checking the distribution of a data sample is the quantile-quantile

plot, Q-Q plot, or QQ plot for short. We can develop a QQ plot in Python using the qqplot()

statsmodels function. The function takes the data sample and by default assumes we are

comparing it to a Gaussian distribution. We can draw the standardized line by setting the

‘line‘ argument to ‘s‘.

Below is the example of plotting the test dataset as a QQ plot :
import required package for plot

from numpy.random import randn

from matplotlib import pyplot

from statsmodels.graphics.gofplots import qqlot

generate univariate observation

Data = 5 * randn(100) + 50

Q-Q plot

qqplot(data, line=’s’)

pyplot.show()

http://www.statsmodels.org/dev/generated/statsmodels.graphics.gofplots.qqplot.html
http://www.statsmodels.org/dev/generated/statsmodels.graphics.gofplots.qqplot.html
http://www.statsmodels.org/dev/generated/statsmodels.graphics.gofplots.qqplot.html

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 10 – Statistical Tests

112

ISBN 978-93-80788-93-7

Running the example creates the QQ plot showing the scatter plot of points in a diagonal line,

closely fitting the expected diagonal pattern for a sample from a Gaussian distribution. There

are a few small deviations, especially at the bottom of the plot, which is to be expected given

the small data sample.

10.5 References

1. https://www.youtube.com/watch?v=dPXBN8ms-cU

2. https://towardsdatascience.com/inferential-statistics-series-t-test-using-numpy-

2718f8f9bf2f

3. https://data-flair.training/blogs/python-statistics/

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 11 – ANOVA Procedure: One Way and Two Way

113

ISBN 978-93-80788-93-7

Chapter 11

ANOVA Procedure: One Way and Two Way

Dr. Asha Jindal, Associate Professor and Head, Department of Statistics,

K. C. College

11.1 Introduction

Analysis of Variance (ANOVA) is used when there are more than two populations to compare.

ANOVA provides a means of comparing the variation within each subset or treatment of data

to the variation between the different subsets of data. The between subset variation is a

reflection of the possible differences between the subset averages. The within subset

variation, for each subset, is a reflection of the inherent variation observed when sampling

from the subset repeatedly. ANOVA is the statistical model that you use to predict a

continuous outcome on the basis of one or more categorical predictor variables.

Assumptions:

Analysis of Variance assumes that

1. The observations on Y are independent.

2. Populations being sampled are normal.

3. Populations being sampled have equal variances.

11.2 One Way ANOVA using Python

One Way ANOVA or One-Factor ANOVA as a Linear Model. An equivalent way to express the

one-factor model is to say that treatment j came from a population with a common mean (μ)

plus a treatment effect (αj) plus random error (eij):

yij = μ + αj + eij , j = 1, 2, …, c and i = 1, 2, …, n

Random error is assumed to be normally distributed with zero mean and the same variance

for all treatments.

I have used babychicks.csv which has data on feed and weight. Weight is dependent variable

and a type of Feed is factor.
In [1]: import pandas as pd

 data=pd.read_csv("C:/User/Admin/Desktop/babychicks.csv")

 data.head(5) ## to check first 5 rows of data along with heading

Out [1]: WEIGHT FEED

 0 55 'A'

 1 49 'A'

 2 42 'A'

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 11 – ANOVA Procedure: One Way and Two Way

114

ISBN 978-93-80788-93-7

 3 21 'A'

 4 52 'A'

In [2]: data.boxplot(‘WEIGHT’, BY=’FEED’, figsize=(12,8)).show()

 #To draw Boxplot to check normality

In [3]: import statsmodels.api as sm

 from statsmodels.formula.api import ols

 mod = ols('WEIGHT~FEED', data=data).fit()

 aov_tables = sm.stats.anova_lm(mod, typ=2)

 print(aov_table)

 sum_sq df F PR(>F)

FEED 26234.95 3.0 12.10504 0.000218

Residual 11558.80 16.0 NaN NaN

In [4]: ### type choice adds the mean square column in ANOVA

 aov_table = sm.stats.anova_lm(mod,typ=1)

 print(aov_table)

 df sum_sq mean_sq F PR(>F)

FEED 3.0 26234.95 8744.983333 12.10504 0.000218

Residual 16.0 11558.80 722.425000 NaN NaN

p-value= 0.000218< 0.05 indicates significant difference between four types of feed.

Post hoc analysis Bonferroni is used to answer which feed differs from others.

General coding for pairwise analysis syntax

Method 1: Bonferroni:
In[5]: pair_t = mod.t_test_pairwise('FEED',method='bonferroni')

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 11 – ANOVA Procedure: One Way and Two Way

115

ISBN 978-93-80788-93-7

 pair_t.result_frame

Groups D and A, D and B as well as D and C differ significantly.

Same results are demonstrated using Sidak method.

Method 2: Sidak:
In[6]: pair_t = mod.t_test_pairwise('FEED',method='sidak')

 pair_t.result_frame

11.3 Two Way ANOVA using Python

A two-way ANOVA test is a statistical test used to determine the effect of two nominal

predictor (2 Factors) variables on a continuous outcome(dependent) variable. ANOVA

stands for analysis of variance and tests for differences in the effects of independent

variables on a dependent variable.

I have used Production.csv which has data on Machine Type, Workmen and Production.

Production is dependent Variable and Machine Type and type of Workmen are two factors.
In [1]: import pandas as pd

 data1=pd.read_csv(“C:/User/Admin/Desktop/Production.csv”)##File Path

 data.head(5) ## First 5 rows

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 11 – ANOVA Procedure: One Way and Two Way

116

ISBN 978-93-80788-93-7

In [2]: import statsmodels.api as sm

 from statsmodels.formula.api import ols

 formula = ‘Production~C(Workmen)+C(MachineType)’

 model = ols(formula,data1).fit()

 aov_table = sm.stats.anova_lm(model,typ=2)

 print(aov_table)

 sum_sq df F PR(>F)

C(Workmen) 201.5 4.0 8.202171 0.001990

C(MachineType) 353.8 3.0 19.202171 0.000071

Residual 73.7 12.0 NaN NaN

In [3]: aov_table=sm.stats.anova_lm(model,typ=1)

 print(aov_table)

 df sum_sq mean_sq F PR(>F)

C(Workmen) 4.0 201.5 50.375000 8.202171 0.001990

C(MachineType) 3.0 353.8 117.933333 19.202171 0.000071

Residual 12.0 73.7 6.141667 NaN NaN

Both the P value < 0.05 indicates significant difference between five types of workmen and

four types of machine.

We can also do some diagnostics. It is to show the linear model fitted with the OLS method

and get a Quantile-Quantile (QQplot).

In [4]: import matplolib.pyplot as plt

 res=model.resid

 fig=sm.qqplot(res, line=’s’)

 plt.show()

Above Q-Q plot shows normality.

Post-hoc Testing:

There are a few different methods of post-hoc testing to find a difference between groups of

factors. I will show how to use Tukey’s HSD. We have to test for difference for each factor

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 11 – ANOVA Procedure: One Way and Two Way

117

ISBN 978-93-80788-93-7

separately. To Carry out Post Hoc Analysis one has to install statsmodel library and steps are

as follows:

1. Go to search in start button and type Anaconda Prompt which will open the window.

2. Type pip install statsmodels and press Enter key

3. Installation process will begin and it will complete in approximately 2 minutes.

In[5]:mc=statsmodels.stats.multicomp.MultiComparison(data1[‘Producion’],

data1[‘MachineType’])

mc_results = mc.tukeyshsd()

print(mc_results)

Above table shows Machine Types Aand C, B and C as well as C and D differ significantly.

In [6]: ## Converting workmen from float to string

 data1[‘Workmen’]=data1[‘Workmen’].astype(str)

In [7]:mc=statsmodels.stats.multicomp.MultiComparison(data1[‘Production’]

 ,data1[‘Workmen’])

 mc_results=mc.tukeyhsd()

 print(mc_results)

Above table shows all workmen group does not differ significantly.

11.4 References

1. https://pythonfordatascience.org/anova-2-way-n-way/#comparison

2. https://www.marsja.se/four-ways-to-conduct-one-way-anovas-using-python/

3. Python Tutorial: https://www.py4e.com/lessons

4. https://chrisalbon.com

https://pythonfordatascience.org/anova-2-way-n-way/#comparison
https://www.marsja.se/four-ways-to-conduct-one-way-anovas-using-python/
https://www.py4e.com/lessons

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 12 – ANCOVA Procedure

118

ISBN 978-93-80788-93-7

Chapter 12

ANCOVA Procedure

Mr. Shubham Niphadkar, Assistant Professor, Department of Statistics,

K. C. College

12.1 What is Analysis of Covariance?

Analysis of covariance is a mixture of Analysis of variance and Regression. For performing

ANCOVA, data must consist of a dependent variable, categorical independent variable and

continuous independent variables. The categorical independent variable is called as

treatment and continuous independent variables are called as covariates. Generally,

dependent variable is denoted by ‘DV’, treatment or categorical independent variable by ‘IV’

and covariates by ‘CV’. The main aim of ANCOVA is to test whether the means of a dependent

variable are same across all levels or categories of treatment, while statistically controlling

the effects of all covariates which are not of interest, at least primarily. In ANCOVA, the

variance in the dependent variable (DV) is split into the variance explained by treatment or

independent variable (IV), variance explained by covariates (CV) and residual variance.

The ANCOVA assumes linear relationship between the dependent variable (DV) and

covariate (CV).

12.2 Assumptions of ANCOVA

Analysis of Covariance has several underlying assumptions. The assumptions of standard

linear regression also hold. The assumptions are given as follows:

1. Linearity of regression

2. Independence of error terms

3. Homogeneity of regression slopes

4. Normality of error terms

5. Homogeneity of error variances

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 12 – ANCOVA Procedure

119

ISBN 978-93-80788-93-7

Linearity of regression:

The relationship between the dependent variable and the associated variables must be

linear.

Independence of error terms:

The error terms must not be correlated. The variance-covariance matrix of the error term

must be diagonal.

Homogeneity of regression slopes:

The slopes of regression lines must be equal across all the levels of treatment. The regression

lines must be parallel among all levels.

Normality of error terms:

The distribution of error terms must be normal.

Homogeneity of error variances:

The variances of the error term must be same for different categories or levels of treatments.

We can perform Analysis of Covariance (ANCOVA) and from the p-value we can conclude

whether the means of a dependent variable are same across all levels or categories of

treatment, while statistically controlling the effects of all covariates. We will use ‘pingouin’

package. We need to install this package using pip command pip install pingouin

12.3 Examples

1. Consider a dataset “LoanData”. This data consist of 3 variables, viz. Education,

ApplicantIncome and LoanAmount. The observations were recorded for 432 people on

each variable. The variable Education represents whether or not the applicant has

graduated high school.ApplicantIncome is the income of the applicant. LoanAmount is

the amount of loan which applicant wants to borrow.

Objective: Our aim is to examine how applicant’s loan amount varies with their education

and income.

Analysis:
In [1] : import numpy as np

 import pandas as pd

 import scipy.stats as stats

 import matplotlih.pyplot as plt

 import statsmodels

 import statimodels.api as sm

 from statsmodels.formula.api

 import ols

 from statsmodels.grapbics.gofplots import qqplot

 from pingouin import ancova

In [2]: #Importing dataset

 df=pd.read_csv(“D:/ANCOVA Pyhon/LoanData.csv”)

 print(list(df))

 [‘Education’, ‘ApplicatIncome’,’LoanAmount’]

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 12 – ANCOVA Procedure

120

ISBN 978-93-80788-93-7

We can see that there are 3 columns in dataset, viz., Education, ApplicantIncome and

LoanAmount.
In [3]: # to view forst 5 observations in our dataset

 df.head()

In [4]: # To get information about variables in dataset

 df.info()

Education is a categorical variable. ApplicantIncome and LoanAmount are continuous

variables. There are 432 observations on each variable, and there is no missing observation.

We are interested to examine how applicants loan amount varies with their education and

income. So, LoanAmount will be dependent variable (DV). Since, Education is a categorical

variable, it will be considered as independent variable (IV) for ANCOVA. Since,

ApplicantIncome is continuous variable, it will be considered as covariate (CV).
In [5]: #to obtain and description of categories or levels in variable 'Gender'

 df['Education'].nunique()

Out [5]: 2

In [6]: df['Education'].unique()

Out [6]: array(['Graduate','Not Graduate'], dtype=object)

In [7]: df['Education'].value_counts()

Out [7]: Gradute 344

 Not Gradute 88

 Name:Education, dtype: int64

There are 2 categories in variable ‘Education’, viz., ‘Graduate’ and ‘Not Graduate’. Out of 432

applicants for whom the observations were recorded, 344 are graduated and 88 are not

graduated.

In [8]: # to get description about values in data

df.describe(include=’all’)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 12 – ANCOVA Procedure

121

ISBN 978-93-80788-93-7

We want to check whether there is any relationship between ApplicantIncome and

LoanAmount and whether that relationship is linear. This can be done easily by using scatter

plot.

In [10]: #Scatter Plot

 df.plot.scatter(“ApplicatIncome”,”LoanAmount”)

 plt.show()

From the scatter plot we can assume the linear relationship between ApplicantIncome and

LoanAmount.

Since the observations are collected on different applicants, we can assume that the error

terms will be independent of each other. Now, we have to check whether the assumption

about homogeneity of slopes of regression lines. For this, we will run ANCOVA by including

covariate (CV) as well as interaction between independent variable (IV) and CV. To obtain a

variable which will represent interaction, we will create dummy variable for ‘Education’,

such that 0 will represent ‘Not Graduate’ and 1 will represent ‘Graduate’.

In [11]: #creating dummies

 dummy=pd.get_dummies(df[‘Education’])

 df=pd.concat([df,dummy[‘graduate’]],axis=1)

 df.head()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 12 – ANCOVA Procedure

122

ISBN 978-93-80788-93-7

Now we have included dummy variable in our dataset. We need to calculate variable for

representing interaction term. It can be done multiplying IV by dummy variable.

In [12]: #creating interaction variable

 Interact = df [‘Graduate’]*df[‘ApplicantIcome’]

 df=pd.concat([df,interact], axis=1)

 print(list(df))

 [‘Education’,’ApplicantIncome’,’LoanAmount’,’Graduate’,0]

We have included the variable representing interaction in our dataset. But we need to change

the variable name.

In [13]: df= df.rename(columns={0:’interacts’})

 prints(list(df))

 [‘Education’,’ApplicantIncome’,’LoanAmount’,’Graduate’,’interacts’]

Now we can run the required ANCOVA for checking the homogeneity of regression slopes.

In[14]: #ANCOVA

 Ancova(data=df,dv=’LoanAmount’,covar=[‘ApplicantIncome’,’interact’],

 between =’Education’)

We can see that the p-value for interact is 0.810027> 0.05. So we can conclude that the

interaction effect of ‘Education’ and ‘ApplicantIncome’ is not significant at 5% level of

significance. So, the slope of regression lines is same across all categories of Education. Thus

we can proceed to perform ANCOVA.

In[15]:ancova(data=df,dv=’LoanAmout’,

covar=’ApplicantIncome’,between=’Education’)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 12 – ANCOVA Procedure

123

ISBN 978-93-80788-93-7

We can see that the p-value for Applicant Income is 1.090642e-39< 0.05. So we can conclude

that Applicant Income is having significant effect on Loan Amount at 5% level of significance.

But, the p-value for is Education1.751684e-02 < 0.05. So, Education is having significant

effect on LoanAmount at 5% level of significance. Thus, means of Loan Amount are not same

across all levels of Education, while statistically controlling the effect of Applicant Income.

In [16]: #Regression and ANCOVA

 model_ancova=ols(“LoanAmount~education+ApplicantIncome”,data=df).fit()

 aov=sm.stats.anova_lm(model_ancova,typ=2)

 print(aov)

So, it is verified that ANCOVA is a mixture of ANOVA and regression analysis. We will also

check for normality of error term with the help of Q-Q plot.

In [17]: #Normality of Residuals

 qqplot(model_ancova.read,line=’s’)

 plt.show()

From the Q-Q plot we can see that many points are lying almost around the line. Only few

points out of 432 observations are far away from the line. So we can assume normality of

error term.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 12 – ANCOVA Procedure

124

ISBN 978-93-80788-93-7

Now we will also check whether variance of the error term is same for female and male. This

can be done by using Levene’s test.

In [18]: #Levene’s test

 Stats.levene(df[‘LoanAmount’][df[‘Education’]==’Graduate’],df[‘Loanamou

nt’][df[‘Education’]==’Not Graduate’])

Out[18]:LeveneResult(statistic=10.175983971254613,pvalue=0.0015269752598705

 57)

We can see that the p-value is 0.0015269752598705557< 0.05. So, we can conclude that

variance of the dependent variable and hence that of the error term is not same for graduate

and not graduate. So, the assumption about homogeneity of variance is not satisfied. Thus, it

is not appropriate to perform ANCOVA for this dataset.

2. Consider a dataset “Gender_Height_Weight”. This data consist of 3 variables, viz.

Gender, Height and Weight. The observations were recorded for 237 children on each

variable. Height is measured in inches (1 inch = 2.54 cm), and Weight is measured in

pounds (1 pound = 0.45 kg).

Objective: Our aim is to examine how children weight varies with their gender and height.

Analysis:
import numpy as np

import pandas as pd

import scipy.stats as stats

import matplotlib.pyplot as plt

import statsmodels

import statsmodels.api as sm

from statsmodels.formula.api import ols

from statsmmodels.graphics.gofplots import qqlot

from pingouin import ancova

In [2]: #Import dataset

 df= pd.read_csv(“D:/Gender__Height_Weight.csv”)

 print(list(df))

 [‘Gender’,’Height’,’Weight’]

We can see that there are 3 columns in dataset, viz., Gender, Height and Weight.
In [3]: # to view first 5 observation in our dataset

 df.head()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 12 – ANCOVA Procedure

125

ISBN 978-93-80788-93-7

In [4]: # to get information about variables in dataset

 df.info()

Gender is a categorical variable. Height and Weight are continuous variables. There are 237

observations on each variable, and there is no missing observation.

We are interested to examine how children weight varies with their gender and height. So,

Weight will be dependent variable (DV). Since, Gender is a categorical variable, it will be

considered as independent variable (IV) for ANCOVA. Since, Height is continuous variable, it

will be considered as covariate (CV).

In [5]: # to obtain number and description of categories or level in variable

‘Gender’

 df[‘Gender’].nunique

Out [5]: 2

In [6]: df[‘Gender’].unique()

Out [6]: array([‘f’,’m’],dtype=object)

In [7]:df[‘Gender’].value_counts()

Out [7]: m 126

 f 111

 name: Gender, dtype: int64

There are 2 categories in variable ‘Gender’, viz., ‘m’ and ‘f’. Here ‘m’ indicates male and ‘f’

indicates female. Out of 237 children for whom the observations were recorded, 126 are

male and 111 are female.
In [8]: #to get description about values in data

 df.describe(include=’all’)

We want to check whether there is any relationship between Height and Weight and whether

that relationship is linear. This can be done easily by using scatter plot.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 12 – ANCOVA Procedure

126

ISBN 978-93-80788-93-7

In [9]: #Scatter Plot

 df.plot.scatter(“Height”, “Weight”)

 plt.show()

From the scatter plot we can assume the linear relationship between Height and Weight.

Since the observations are collected on different children, we can assume that the error

terms will be independent of each other. Now, we have to check whether the assumption

about homogeneity of slopes of regression lines. For this, we will run ANCOVA by including

covariate (CV) as well as interaction between independent variable (IV) and CV. To obtain a

variable which will represent interaction, we will create dummy variable for ‘Gender’, such

that 0 will represent ‘f’ and 1 will represent ‘m’.
In [10]: #creating dummies

 dummy=pd.get_dummies (df[‘Gender’])

 df=pd.concat([df,dummy[‘m’]],axis=1)

 df.head()

Now we have included dummy variable in our dataset. We need to calculate variable for

representing interaction term. It can be done multiplying IV by dummy variable.
In [11]: #Creating interaction variable

 interact=df[‘m’]*df[‘Height’]

 df=pd.concat([df,interact],axis=1)

 print(list(df))

 [‘Gemder’,’Height’,’Weight’,’m’,0]

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 12 – ANCOVA Procedure

127

ISBN 978-93-80788-93-7

We have included the variable representing interaction in our dataset. But we need to change

the variable name.
In [12]: df =df.rename(colums=(0:’interact’))

 print(list(df))

 [‘Gender’,’Height’,’Weight’,’m’,’interact’]

Now we can run the required ANCOVA for checking the homogeneity of regression slopes.

In [13]: #ANCOVA

 ancova(data=df,dv=’Weight’,cover=[‘Height’,’interact’],between=’Geder’)

We can see that the p-value for interact is 2.762846e-01> 0.05. So we can conclude that the

interaction effect of ‘Height’ and ‘Gender’ is not significant at 5% level of significance.So, the

slope of regression lines is same across all categories of Gender. Thus we can proceed to

perform ANCOVA.

In [14]: ancova(data=df, dv=’Weight’,covar=’Height’,between=’Gender’)

We can see that the p-value for Height is 5.444591e-48 < 0.05. So we can conclude that

Height is having significant effect on Weight at 5% level of significance. But, the p-value for

Gender is 3.565750e-01> 0.05. So, Gender is not having significant effect on Weight at 5%

level of significance. Thus, means of weight aresame across all levels of Gender, while

statistically controlling the effect of Height.
In [15]: #Regression and ANCOVA

 model_ancova=ols(“weight~Gender+height”,data=df).fit()

 print(aov)

So, it is verified that ANCOVA is a mixture of ANOVA and regression analysis. We will also

check for normality of error term with the help of Q-Q plot.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 12 – ANCOVA Procedure

128

ISBN 978-93-80788-93-7

In [16]: #Normality of Residuals

 qqplot(model_ancova.resid,line=’s’)

 plt.show()

From the Q-Q plot we can see that many points are lying almost around the line. So we can

assume normality of error term.

Now we will also check whether variance of the error term is same for female and male. This

can be done by using Levene’s test.

In [17]: #Levene’s Test

 stats.levene(df[‘Weight’][df[‘Gender’]==’f’],df[‘Weight’][df[‘Gender

 ’]==’m’])

Out[17]: LeveneResult(statistic=0.6272547811263836,value=0.429167936219046)

We can see that the p-value is 0.42916279362190046 > 0.05. So, we can conclude that

variance of the dependent variable and hence that of the error term is same for female and

male.

References

1. https://en.wikipedia.org/wiki/Analysis_of_covariance

2. https://www.statisticshowto.com/ancova/

3. https://pingouin-stats.org/generated/pingouin.ancova.html

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

129

ISBN 978-93-80788-93-7

Chapter 13

Predictive Analysis of Medical Cost

(Study of Regression Analysis to Random

Forest Regression on Medical Cost)

Mr. Sourav S. Tiwari, Postgraduate student, Department of Statistics, NMIMS

To make profit, insurance companies should collect higher premium than the amount paid

to the insured person. Due to this, insurance companies invest a lot of time, effort, and money

in creating models that accurately predicts health care costs. I have explore what features

are important predictors for how much a person will be charged. In this case study I have

tried to build the most accurate model as possible by using multiple linear regression and

random forest regression algorithms.

13.1 Data Description

Data Name: Medical Cost Personal dataset, Source: Kaggle

13.2 Data Analysis

Data file is renamed as “insurance.csv”.
Data used for Analysis:
In [1] : # # # Importing libraries

 import pandas as pd

 import numpy as np

 from sklearn import datasets, linear_model

 from sklearn.model_selection import train_test_split

 from sklearn import preprocessing

 from matplotlib import pyplot as plt

 import seaborn as sns

 from sklearn . preprocessing import StandardScaIer

 import statsmodels . api as sm

 import statsmodels . stats . api as smf

 import statsmodels . formula.api as smf

 import statsmodels. tools. tools as ct

 from statsmodels . stats . outliers_influence import

 variance_inflation_factor

 import os

 from sklearn.metrics import accuracy_score

 from sklearn.metrics import mean_squared_error

 from sklearn. ensemble import RandomForestRegressor

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

130

ISBN 978-93-80788-93-7

 #Required to build random forest

 from statsmodels.compat import lzip

In [2] : ## Importing dataset

 data = pd.read_csv (“C:/Users/Admin/Desktop/insurance.csv”)

 print(data)

In [3]: data.head()

Summary of the data:

In [6]: data_summ=data.describe(include=’all’) ##Summary statisics

 print(data_summ)

Structure of the data
In [4]: data.dtypes ##data types

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

131

ISBN 978-93-80788-93-7

Missing Values
In [7]: ###Checking for missing values

 data.isnull() .sum()

Conversion of the variables:

Conversion of the variables named as sex, smoker, and region of type object to type category can

be done in the following way.

In [45]: data[“sex”] = data[“sex”].astype('category')

 data[“smoker”] =data[“smoker”].astype('category')

 data[“region “] = data["region"].astype('category')

 data.dtypes

Visualization:

Bar Plots
In [20]: ###catplot or double barplot

 ##to change the colour - palette=”pink" inside the catplot ()

 sns.catplot(x="sex”, kind="count”, palette-"pink", data=data ,

 size=5)

In [21]: sns.catplot(x="smoker”, kind="count”, palette-"rainbow",

 data=data,size=5)

In [22]: sns.catplot(x="region”, kind="count”, palette-"pink",

 data=data,size=5)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

132

ISBN 978-93-80788-93-7

From the above bar graphs we can state that the female count is less than the male count

where the female count is around 660 and male count is around 670. The number of non-

smokers is more than number of smokers i.e. the non-smokers are more than 1000 while the

number of smokers are less than 300. The number of patients is more in south-east region

while in the other regions the numbers of patients are almost equal.

Swarm Plots
In [24]: sns.swarmplot(x= ‘sex' , y = 'charges' , data = data , hue =

 'sex')

In [25]: sns.swarmplot(x= ‘smoker' , y = 'charges' , data = data , hue=

 'smoker')

In [23]: sns.swarmplot(x= ‘region' , y = 'charges' , data = data , hue=

 'region')

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

133

ISBN 978-93-80788-93-7

Fig (1) fig (2)

fig (3)

From fig (1) shows that most of the people pay charges between Rs.0 to Rs.15,000

approximately. Some of them are paying charges between Rs.15,000 to Rs.47,000. From fig

(2), one can say that in all four regions majority of the people pay charges upto Rs.15,000

(approximately). Also south-east region has more number of insurers than any other

regions. From fig (3), the smokers pay more charges than the non-smokers. Most of the non-

smokers pay charges less than Rs.20,000. While the insurers in smoker category pay more

than Rs.10,000 and many smokers pay the more than Rs.40,000

Histogram of Charges
In [16]: f= plt.figure (figsize=(12, 5))

 sns.distplot(data['charges'],kde=0,color='red')

Out [16] : <matplotlib.axes._subplots.AxesSubplot at Ox9ed23d0>

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

134

ISBN 978-93-80788-93-7

Charges variables positively skewed, i.e., Most of the insurer pay charges less than Rs. 20,000.

Detecting Outliers by using Box plot:
In [26]: data.columns

Out [26]: Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region',

 'charges'], dtype='object')

In [27]: sns.boxplot(data['age'])

Out [27]: <matplotlib.axes._subplots.AxesSubplot at 0xb5d8630>

In [28]: sns.boxplot(data['bmi']) ###outliers

Out [28]: <matplotlib. axes. _subplots.Axes Subplot at Oxb5f2250>

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

135

ISBN 978-93-80788-93-7

Here box plots are used to detect the outliers. These are the boxplots of variables Age and

BMI respectively. So, from these box plots we can say that there is no outliers in the variable

Age whereas there are outliers in the variable BMI.

In [30]: sns.boxplot(data['children'])

Out [30]: <matplotlib.axes._subplots.AxesSubplot at 0xb681510>

In [29]: sns.boxplot(data['charges']) ###out1iers

Out [29]: <matplotlib.axes._subplots.AxesSubplot at 0xb654d30>

These are the box plots for variables Children and Charges depicting the presence of outliers

in variable Charges. Since outliers are present only in two variables i.e. in BMI and Charges

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

136

ISBN 978-93-80788-93-7

and therefore calculating lower whisker and upper whisker only for these two variables so

that outliers can be treated.

Inter Quartile Range Score (IQR Score) for the variables BMI and Charges:

For BMI
In [31]: Q1=data[‘bmi’].qaantile(0.25)

 Q3=data[‘bmi’].qaantile(0.75)

 IQR=Q3-Q1

 print(IQR)

 8.3975

In [32]: Lower_whisker=Q1-1.5*IQR

 Upper_whisker=Q3+1.5*IQR

 print(Lower_whisker, Upper_whisker)

 13.7 47.290000000000006

For Charges
In [37]: ## Outliers for charges

 Q1=data['charges'].quantile(0.25)

 Q3=data['charges’].quantile(0.75)

 IQR=Q3-Q1

 print(IQR)

 11899.625365

In [38]: Lower_whisker=Q1-1.5*IQR

 Upper_whisker=Q3+1.5*IQR

 print(Lower_whisker,Upper_whisker)

 -13109.1508975 34489.350562499996

Interpretation

The values which are less than lower whisker and greater than upper whisker are treated as

outliers.

Another way of detecting the outliers:

Calculate the Z-Score

In this procedure we calculate the score for each observation. Any z-score greater than 3 or

less than -3 is considered to be an outlier. This rule of thumb is based on the empirical. From

this rule we see that almost all of the data (99.7%) should be within three standard

deviations from the mean. By calculating the z-score we are standardizing the observation,

meaning the standard deviation is now 1. Thus from the empirical rule we expect 99.7% of

the z-scores to be within -3 and 3. 𝑍 =
𝑋−𝜇

𝜎

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

137

ISBN 978-93-80788-93-7

Note: There are also several methods of detecting outliers such as scatter plot (for continuous

variables), DBSCAN (Density Based Spatial Clustering of Applications with Noise), Cook’s

distance etc.

Remedies for Outliers

➢ Z-Score method

While calculating the Z-score we re-scale and center the data and look for data points which

are too far from zero. In most of the cases a threshold of 3 or -3 is used i.e if the Z-score value

is greater than or less than 3 or -3 respectively, that data point will be identified as outliers.

So in this method, the data is refined by deleting the observations which are having outliers.

Note: In this method the rows are directly removed from the data which are having outliers

but the observations cannot be removed as such because until and unless the outliers are not

absurd values we cannot remove them, and hence removing the outliers is an inappropriate

way of dealing with them.

➢ Inter Quartile Range Score (IQR Score)

This technique uses the IQR scores calculated earlier to remove outliers. The rule of thumb

is that anything not in the range of Lower whisker = (Q1 - 1.5IQR) and upper whisker = (Q3

+ 1.5 IQR) is an outlier, and can be removed. So in this method, the outliers which are lesser

than lower whisker value are replaced by the lower whisker value and the outliers which are

greater than upper whisker value are replaced by the upper whisker value in the data.

In this analysis, the variable BMI has outliers and they are treated by IQR Score in the given

following way:

In [39]: print((data['charges’]>Upper_whisker) .sum())

 #we can see 1282 observation lying above the upper_whisker here

 which seems as outliers

 139

In [40]: print((data['charges']<Lower_whisker) .sum())

 # no oservation below the lower_whisker

 0

In [41]: #replacing all values which are greater than upper_whisker by

 upper_whisker

 data['bmi'] =np.where (data[‘bmi']>

 Upper_whisker,Upper_whisker,data ['bmi'])

In [42]: sns.boxplot(data('bmi']) #outliers removed

Out [42]: <matplotlib.axe5._subplots.AxesSubplot at 0xc7e2630>

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

138

ISBN 978-93-80788-93-7

Hence the outliers are removed from the variable BMI.

For variable Charges, the outliers can’t be treated by using this method because the outliers

are much larger than the upper whisker value and hence the outliers can’t be a good

imputation for the outliers and thereby outliers can’t be replaced by upper whisker value.

Limitation: So in this analysis without treating outliers for variable charges the analysis has

proceeded and fitted the Multiple Linear Regression Model

Note: The Multiple Linear Regression Model has fitted here but in actual scenario if any of

the assumptions of multiple linear regression does not satisfy then we can’t proceed with

this algorithm. Instead of this algorithm we have to go for non parametric test. Here we have

used Random Forest Regression (non parametric algorithm) for predicting the insurance

charges.

Creating Dummies for Categorical Variables:

While fitting the multiple linear regression models the response variables have to be in a

numeric type. Categorical variable has levels and it has to be converted into indicator

variable so they can be used in the model.

In [46]: ins_data= pd.get_dummies (data,columns=[‘sex’,’smoker’,’region’]

 ,drop_first=True) ##Creating dummies

 print(ins_data)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

139

ISBN 978-93-80788-93-7

In [47] : ins_data.columns

Out [47]: Index (['age' , 'bmi' , 'children' , 'charges' , 'sex_male' ,

 'smoker _yes' , 'region_northwest','region_southeast',

 'region_southwest'], dtype= ‘object’)

After creating the dummy variables we have following variables:

Age, BMI, Children, Charges, Sex_male, Smoker_yes, Region_northwest, Region_southwest

and Region_southeast where variables Sex_male, Smoker_yes, Region_northwest,

Region_southwest and Region_southeast are dummy variables of Sex, Smoker and Region

respectively.

Splitting the data into Train data and Test data:

Once the dummy variables are created for the categorical variables the refined data is

splitted into train data and test data. Train data consists of maximum part of the refined data

and remaining part goes under the test data. In this analysis, the train data consists of 70%

and the test data consists of remaining 30%.
In [48] : ###Spliting the insurance dataset into train data and test data

 y =ins_data.charges

 x=ins _data. drop ('charges', axis=1)

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state

=0)

The MLR model is fitted on the train data and has used for the prediction of insurance

charges on the test data.

Standardization of Variables:

We standardize the independent and dependent variables, except the dummy variables, so

that they all get measured on the same scale.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

140

ISBN 978-93-80788-93-7

##Seperating the numeric variable and categorical variable of x_train data

num_var_xtrain=x_train [[‘age’,’bmi’,’children’]]

In [58]:cat_var_xtrain=x_train[[‘sex_male’,smoker_yes’ ,‘region_northwest’

 ,’region_southest’]]

In [59]: ##Standardizing the num_var_xtrain data

 scaler = StandardScaler ()

 a=scaler.fit_transform(num_var_xtrain)

 print(a)

 ### These codes will give the standardized values but in array form

Converting array into data frame
In [60]: ##Converting array into dataframe

 std_num_var_xtrain=pd.DataFrame(a,columns=[‘age’,’bmi’,’children’])

In [61]: std_xtrain=pd.concat([std_num_var_xtrain,cat_var_xtrain],axis=1)

 print(std_xtrain)

Note: Since std_xtrain has “NaN” values and it is because std_num_var_xtrain and

cat_var_xtrain both has different indexes therefore changing the index of cat_var_xtrain
In [62]: cat_var_xtrain = cat_var_xtrain.reset_index()

 Std_xtrain=pd.concat([std_num_var_xtrain,cat_var_xtrain],axis=1)

 print(std_xtrain)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

141

ISBN 978-93-80788-93-7

In [63]: std_xtrain=std_xtrain.drop(‘index’,axis=1)

 print(std_xtrain)

Standardizing y_train and y_test data
In [64]:##Standardizing y_train data

 ins_data.charges

 print(y_train)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

142

ISBN 978-93-80788-93-7

In [65]: mean_ytrain=y_train.mean()

 std_ytrain=y_train.std()

 std_ytrain=(y_train-mean_ytrain)/(std_ytrain)

 std_ytrain=std_ytrain.reset_index()

 std_ytrain=std_ytrain.drop(‘index , axis=1)

 print(std_ytrain)

In [66]: ##Standardizing y_test data

 ins_data.charges

 print(y_test)

In [67]: mean_ ytest=y_test.mean()

 std_ ytest=y_test.std()

 std_ ytest=(y_test-mean_ ytest)/(std_ ytest)

 print(std_ytest)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

143

ISBN 978-93-80788-93-7

Separating the numeric variables and categorical variables of x_test data
In [68]: ##Separating the numeric variables and categorical variables of

 #x_test data

 num_ var_xtest=x_test[['age', 'bmi', 'children']]

 print (num_ var_xtest)

In[69]: cat_var_xtest=x_test[[‘sex_male’,’smoker_yes’,’region_northwest’,

 ’region_southwest’,’region_southest’]]

 print(cat_var_xtest)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

144

ISBN 978-93-80788-93-7

Standardizing the num_var_xtrain data

In [70]: ##Standardizing the num_var_xtrain data

 Scaler=StandardScaler()

 a=scaler.fit_transform(num_var_xtest)

 print(a)

 ###These codes will give the standardized values but in array form

Converting array into data frame

In [71]: ##Converting array into data.frame

 std_num_var_xtest=pd.DataFrame(a,columns=['age','bmi','children'])

 print(std_num_var_xtest)

In [72]: std_xtest=pd.concat([std_num_var_xtest,cat_var_xtest],axis=1)

 print(std_xtest)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

145

ISBN 978-93-80788-93-7

Note: Since std_xtest has NaN values and it is because std_num_var_xtest and cat_var_xtest

both has different indexes therefore changing the index of cat_var_xtest

In [73]: cat_var_xtest = cat_var_xtest.reset_index()

 std_xtest=pd. concat ([std_num_var_xtest, cat_var_xtest],axis=1)

 print(std_xtest)

In [74]: std_xtest.columns

 std_xtest=std_xtest.drop(‘index’,axis=1)

 print(std_xtest)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

146

ISBN 978-93-80788-93-7

Predictive Modeling:

Multiple Linear Regression

It is a statistical tool that allows you to examine how multiple independent variables are

related to a dependent variable. Once we have identified how these multiple variables relate

to your dependent variable, we can take information about all of the independent variables

and use it to make much more powerful and accurate predictions about why things are the

way they are. This latter process is called “Multiple Regression”.

A population model for a multiple linear regression model that relates a y-variable to p -1 x-

variables is written as Yi =β0 + β1xi1 + β2xi2 +…+ β(p−1)xi (p−1) + ϵi.

Dependent and Independent variable for modeling

In our given data Charges i.e. Individual medical costs billed by health insurance i.e. Y =

Charges. Independent variables are Age, BMI, Children, Sex, Smoker and Region.

Hypothesis Testing

H0: β1= β2= β3=…….= βp=0 i.e. No variable is significant, against

H1: Not H0, i=1, 2, 3…p, i.e. Atleast one variable is significant

Model Building

Multiple linear regression model between our dependent and independent variables is

Y (charges) = β0+ β1*(age) + β2*(BMI) + β3*(children) + β4*(sex_male) + β5*(smoker_yes) +

β6*(region_northwest) + β7*(region_southeast) + β8*(region_southwest)

In [78]: ###Fitting of regression model by statsmodel.api library

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

147

ISBN 978-93-80788-93-7

 X= sm.add_ constant(std_xtrain) #adding a constant

 std_ytrain = pd.DataFrame(std_ytrain)

 model = sm.OLS(std_ytrain,X).fit() ###Regression model

 y_train_pred =model.predict(X)

 print_model =model.summary()

 print(print_model)

To obtain Residuals
Residuals= model.resid ##Residuals

###Testing the model on test dataset

X = sm.add_constant(std_xtest) #adding a constant

y_test_pred = model.predict(X)

Assumptions Validation:

1. Multicollinearity

Multicollinearity exists when two or more of the predictors (independent variables) in a

regression model are moderately or highly correlated. Unfortunately, when it exists, it can

wreak havoc on our analysis and thereby limit the research conclusions we can draw.

Detection

 Multicollinearity may be checked multiple ways:

i) Correlation matrix –When computing a matrix of Pearson’s bivariate correlations among

all independent variables, the magnitude of the correlation coefficients should be less

than 0.80.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

148

ISBN 978-93-80788-93-7

ii) Variance Inflation Factor (VIF) – The VIFs of the linear regression indicate the degree

that the variances in the regression estimates are increased due to multicollinearity. VIF

values higher than 5 indicate that multicollinearity is a problem.

Remedies

➢ Drop one of the independent variable which is explained by others

➢ Use Principal Component Regression in case of severe multicollinearity

➢ Use Ridge Regression

In our data we checked the multicollinearity by using VIF. Here we considered VIF threshold

value equals to 5. Consider the model,

Y (charges) = β0+ β1*(age) + β2*(BMI) + β3*(children) + β4*(sex_male) + β5*(smoker_yes) +

β6*(region_northwest) + β7*(region_southeast) + β8*(region_southwest)

In [83]: ##By VIF

 vif = [variance_inflation_factor(std_xtrain.values,i)for I in

 range(std_xtrain.shape[1])]

 A=pd.DataFrame((‘vif’ :vif[0:]), index=std_xtrain.columns.T

 print(a)

Here as we can see none of the values of VIF is greater than or equal to 5. Therefore we can

say that there is no multicollinearity in the data.

2. Linearity

In multiple linear regression we assume that there is linear relationship between the

response variable and predictors.

Detection

One can detect linearity form scatter plot. Another way of testing linearity between the

variables is by using the test called Harvey-Collier multiplier test. The Harvey-Collier test

performs a t-test on the recursive residuals. If the true relationship is not linear but convex

or concave the mean of the recursive residuals should differ from 0 significantly. This means

that a significant result means that you can reject the null hypothesis that the true model is

linear.

In [79]: ###Testing for linearity of dependemt and independent variables

 plt.scatter(y_train_pred,residuals)

 plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

149

ISBN 978-93-80788-93-7

The scatter plot is slightly convex downward which represents non linearity between the

dependent and independent variables.

In [80]: ###Another way of testing Linearity assumption

 '''Harvey-Collier multiplier test for Null hypothesis that the

 linear specification is correct'''

 name = ['t value', 'p value']

 test= sms.linear_harvey_collier(model)

 lzip(name,test)

Note: Here the code sms.linear_harvey_collier() will throw an error of singular matrix and

that is because of absence of multicollinearity in the data. If the variables would have highly

correlated it wouldn’t have thrown the error.

Remedy

If this assumption is not satisfied then use some appropriate transformation. As in our case

we have applied Log transformation on our response variable.

For this data I have tried to implement different transformations but still the data was not

satisfying the linearity assumption. Hence I have proceeded forward without satisfying this

assumption.

3. Homoscedasticity

The assumption of homoscedasticity (meaning “same variance”) is central to linear

regression models. Homoscedasticity describes a situation in which the error term (that is,

the “noise” or random disturbance in the relationship between the independent variables

and the dependent variable) is the same across all values of the independent variable.

Detection

Homoscedasticity can be tested statistically by Breush-Pagan test. Consider the hypothesis,

H0: The variance of the residuals is constant, against

H1: The variance of the residuals is not constant.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

150

ISBN 978-93-80788-93-7

Breush Pagan Test

In [77]: ###Homoscedasticity

 import statsmodels.stats.api as sms

 import statsmodels.formula.api as smf

 #Breusch-Pagan Test for Heteroscedasticity

 bptest=sms.diagnostic.het_breuschpagan(residuals,model.model.exog)

 print(bptest)

 (86.48898360885777, 2.3947340156043142e-15, 11.797270173435852,

 4.3049684277300757e-16)

Here the p-value is lesser than significance level 0.05 hence we reject H0 and conclude that

the variance of the residuals is not constant.

Remedy

The problem of Heteroscedasticity can be resolved by using some appropriate

transformation on dependent variables. The Box-Cox transformation is the technique to find

out the appropriate transformation for the response variable. Here we tried for both the

remedies but couldn’t work for this data. Hence, I have proceeded for the further

assumptions without solving the problem of heteroscedasticity.

4. Normality of the residuals

The residual terms are assumed to be normally distributed with mean 0 and variance σ².

Detection

For univariate case this assumption can be checked by using Shapiro Wilk’s test. For

multivariate this assumption can be checked by Jarque-Bera test.

In [78]: ###Test for Normality of residuals

 name=[‘Jarque-Bera’, ‘Chi^2 two-tail prob.’, ‘skew’, Kurtosis’]

 test = sms . jarque_bera(residuals)

 lzip(name,test)

Out [78]: ((‘Jarque-Bera’, 572.1949328827559), (‘Chi^2 two-tail prob.’,

5.61628370588809e-125),(‘Skew’, 1.311358707239599), (‘Kurtosis’,

5.791597805827201)]

Here the p-value is lesser than significance level 0.05 hence we reject H0 and conclude that

the residuals do not follow normal distribution.

Remedies

➢ A usual remedy is to use a transformation of the variables to make them closer to

normally distributed.

➢ Generalized linear mixed model

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

151

ISBN 978-93-80788-93-7

We tried for the transformation of the variables but couldn’t attain the normality of the

residuals. Further, we didn’t try for the generalized linear mixed model because already

above mentioned assumptions are violated and the remedy didn’t work. So even if this

remedy could have worked to attain the normality of residuals still we couldn’t fit the MLR

model.

5. Autocorrelation

The assumption of uncorrelated and independent error terms for regression models using

time series data is not always appropriate. Usually the errors in the time series data exhibit

serial correlation. i.e. E(εi) and E(εj) is not zero. Such error terms are said to be

autocorrelated.

Detection

i) Plot of residuals versus time

ii) Durbin Watson test

I have used Durbin Watson test for detecting the autocorrelation in the data.

H0: ρ = 0 i.e. there is no autocorrelation present in the data

H1: ρ ≠ 0 i.e. there is autocorrelation present in the data

where, ρ is autocorrelation factor

In [78]: ###Fitting of regression model by statsmodel.api library

 X= sm.add_ constant(std_xtrain) #adding a constant

 std_ytrain = pd.DataFrame(std_ytrain)

 model = sm.OLS(std_ytrain,X).fit() ###Regression model

 y_train_pred =model.predict(X)

 print_model =model.summary()

 print(print_model)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

152

ISBN 978-93-80788-93-7

These are the codes for model building and model summary by using statsmodels library of

python. Model summary includes Durbin Watson value and therefore there is no need to

impute it by using different codes.

In present study, Durbin Watson value is 2.048 which is approximately equal to 2. Hence

from the interpretation of Durbin Watson test we can say that there is no autocorrelation in

the data.

From the above summary we can see that variables age, BMI, children and region_northwest

are the significant variables. Hence these variables should be included in the model and all

other variables should be excluded.

The adjusted-R2value suggests the proportion of the variance explained by the model. 72.9%

of the total variance is explained by our model.

Interpretation of βi’s:

1-unit increase in X multiplies the expected value of Y by corresponding β value.

Since the assumptions were not satisfied I couldn’t proceed for the further analysis by using

multiple linear regression algorithms and hence I had selected another technique called

Random Forest Regression for the predictive analysis.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

153

ISBN 978-93-80788-93-7

Random Forest Regression:

Random forest is a Supervised Learning algorithm which uses ensemble learning method

for classification and regression. Random forest is a bagging technique. Bootstrap

Aggregation (Bagging). Bootstrap refers to random sampling with replacement. Bootstrap

allows us to better understand the bias and the variance with the dataset. Bootstrap involves

random sampling of small subset of data from the dataset.) The trees in random forests are

run in parallel. There is no interaction between these trees while building the trees. It

operates by constructing a multitude of decision trees at training time and outputting the

class that is the mean prediction (regression) of the individual trees.

import os

from sklearn.metrics import accuracy_score

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split

from sklearn. ensemble import RandomForestRegressor

 #Required to build random forest

For this algorithm, first created dummies for the categorical variables and splitted the data

in train data and test data. After splitting the data into two different data we standardized

the every variable.

Note: The codes for creating dummy variables, splitting the data into train and test and

standardization of the variables are already given above.

Building Random Forest Regression Model

In [80]: ######Random Forest Regression ########

##Create_Separate_dataframe_consisting_of_only_dependent_variable

 y=ins_data.charges

 x= ins_data.drop('charges',axis=1)

##Create_Separate_dateframe_consisting_of_only_independent_variable

 x= data.drop(columns=('charges'), inplace =False,axis=1)

##Split the data into train end test and then standardize the both the data by

using the above codes

 ##### Fitting the regression model to the dataset#####

regressor=RandomForestRegressor(n_estimators=220,

 max_features=1,

max_depth=1,random_state = 42)

 model-regressor.fit(std_train, std_ytrain)

print(model)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

154

ISBN 978-93-80788-93-7

Prediction on the test data

y_pred = regressor.predict(std_xtest)

test_values =pd.DataFrame(y_pred)

tv _head=test_ values .head ()

print(test_values)

Checking for the overfit of the model
In [94]: ##Mean Square Error and Root mean square error

 mse=mean_squared_error(std_ytest,test_values)

 rmse-np. sqrt (mse)

 print("Mean Square Error:”, mse)

 print("Root Mean Square Error:”,rmse)

 Mean Square Error: 0.8088461734961657

 Root Mean Square Error: 0.8993587568352052

MSE Interpretation

A larger MSE means that the data values are dispersed widely around its central moment

(mean), and a smaller MSE means otherwise and it is definitely the preferred and/or desired

choice as it shows that data values are dispersed closely to its central moment (mean); which

is usually great.

RMSE Interpretation

The RMSE is the square root of the variance of the residuals. It indicates the absolute fit of

the model to the data–how close the observed data points are to the model’s predicted

values. Whereas R-squared is a relative measure of fit, RMSE is an absolute measure of fit. As

the square root of a variance, RMSE can be interpreted as the standard deviation of the

unexplained variance, and has the useful property of being in the same units as the response

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 13 – Predictive Analysis of Medical Cost

155

ISBN 978-93-80788-93-7

variable. Lower values of RMSE indicate better fit. RMSE is a good measure of how accurately

the model predicts the response.

Here the MSE and RMSE are 0.808846 and 0.899 which is very small and therefore we can

say that the model is a good fit.

13.3 Conclusion

The patients which are older in age, having high BMI with smoking habit are found to have

high medical charges. The region southeast has maximum number of patients than any other

region because the number of smokers having high BMI are more in that region. The number

of patients covered by the medical health insurance is the aged patients. So eventually the

people who have got the medical insurance are the older in age, have smoking habit, have

high BMI and they mostly belongs to southeast region.

13.4 References

1. https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

2. https://www.geeksforgeeks.org/random-forest-regression-in-python/

3. https://towardsdatascience.com/random-forest-and-its-implementation-

71824ced454f

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 14 – Factor Analysis

156

ISBN 978-93-80788-93-7

Chapter 14

Factor Analysis

Mr. Prathamesh Thite, Data Analyst, Dinero Software Pvt. Ltd.

14.1 Introduction

Factor analysis is a technique that is used to reduce a large number of variables into fewer

numbers of factors. This technique extracts maximum common variance from all variables

and puts them into a common score. As an index of all variables, we can use this score for

further analysis.

Factor analysis is part of general linear model (GLM) and this method also assumes several

assumptions:

1. No outlier: Assume that there are no outliers in data.

2. Adequate sample size: The case must be greater than the factor.

3. No perfect multicollinearity: Factor analysis is an interdependency technique. There

should not be perfect multicollinearity between the variables.

4. Homoscedasticity: Since factor analysis is a linear function of measured variables, it

does not require homoscedasticity between the variables.

5. Linearity: Factor analysis is also based on linearity assumption. Non-linear variables

can also be used. After transfer, however, it changes into linear variable.

The factor analysis model can be written algebraically as follows. If you have p variables

𝑋1, 𝑋2, … , 𝑋𝑝 measured on a sample of n subjects, then variable 𝑋𝑖 can be written as a linear

combination of m factors F1, F2, . . . , Fm where, as explained above m < p. Thus,

𝑋𝑖 = 𝑎𝑖1𝐹1 + 𝑎𝑖2𝐹2 + ⋯ + 𝑎𝑖𝑚𝐹𝑚 + 𝑒𝑖

where, ‘a’ is are the factor loadings (or scores) for variable 𝑋𝑖 and 𝑒𝑖 is the part of variable

𝑋𝑖 that cannot be ’explained’ by the factors.

Why it is necessary to reduce dimensions of data?

In terms of performance, having data of high dimensionality is problematic because (a) it can

mean high computational cost to perform learning and inference and (b) it often leads to

overfitting when learning a model, which means that the model will perform well on the

training data but poorly on test data. Dimensionality reduction addresses both of these

problems, while (hopefully) preserving most of the relevant information in the data needed

to learn accurate, predictive models.

Also, we can easily interpret 2D plots and it becomes difficult when we have more

http://www.statisticssolutions.com/academic-solutions/resources/directory-of-statistical-analyses/generalized-linear-models/

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 14 – Factor Analysis

157

ISBN 978-93-80788-93-7

dimensions. So, dimensionality reduction technique plays very important role by selecting

relevant features without losing much information of the data.

14.2 Abstract

This study aims for learning the technique of Factor Analysis using Python and its application

on identifying the factors to find breast cancer. This case study is based on data “path.csv”

of 569 patients and to find important variables out of 30 variables namely form of

radius_mean, texture_mean, perimeter_mean, area_mean, smoothness_mean,

compactness_mean, concavity_mean, concave points_mean, symmetry_mean,

fractal_dimenion_mean,radius_se, texture_se, perimeter_se, area_se, smoothness_se,

compactness_se, concavity_se, concave points_se, symmetry_se, fractal_dimenion_se,

radius_worst, texture_worst, perimeter_worst, area_worst, smoothness_worst,

compactness_worst, concavity_worst, concave point_worst, symmetry_worst,

fractal_dimenion_worst. Factor Analysis is used to understand the correlation structure of

collected data and identifying the most important factors for identifying breast cancer.

14.3 Analysis

#Importing required Packages and Data in Python
In [1]: import pandas as pd

 from factor_analyzer import FactorAnalyzer

 import matplotlib import style

 from matlplotlib import style

 df=pd.read_csv(“C:/Users/Admin/Desktop/path.csv”)

 df.shape ##to check dim of data

Out [1]: (569, 30)

In [2]: df.head () ##to check first 5 rows of data

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 14 – Factor Analysis

158

ISBN 978-93-80788-93-7

In [3]: df.isna ().sum () ##to check variable vise whether our data contains any null values

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 14 – Factor Analysis

159

ISBN 978-93-80788-93-7

Let’s get start with statistical tests

1. Kaiser-Meyer-Olkin measure of sampling adequacy:
In [4]: from factor_analyzer.factor_analyzer import calcalate_kmo

 kmo_all,kmo_model=calcalate_kmo(df)

 kmo model

Out [4] : 0.8317335254098296

Kaiser-Meyer-Olkin measure of sampling adequacy=0.83(greater than 0.5) which indicates

data is appropriate for Factor Analysis., i.e., variables (30) and sample size (569) are enough

to proceed for factor analysis. Any value less than 0.5 indicate that the correlation between

pairs of variable cannot be explained by other variables and that factor analysis may not be

appropriate.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 14 – Factor Analysis

160

ISBN 978-93-80788-93-7

2. Barlett’s test of sphericity:

Barlett’s test for sphericity tests the null hypothesis that the correlation matrix is an identity

matrix. Small p-value indicate that evidence against the null hypothesis (i.e. the variables

really are correlated). For p-values much larger than 0.05 indicated that there is insufficient

evidence that variables are not correlated, so far factor analysis may not be suitable.
In [5]: from factor_analyzer.factor_analyzer import

 calcalate_bartlett_sphericity

 chi_square_value,p_value=calculate_bartlett_sphericity(df)

 chi_square_value, p_value

 Out [5]: (39391.522783630295, 0.0)

Here, p-value is less than 0.05 so now we can proceed for factor analysis.

Let’s try to find Eigen values which would decide appropriate number of factors to be chosen

for our analysis and visualize them.

In [6] : fa=FactorAnalyzer(n_factors=30,rotation=”varimax”)

 fa.fit(df)

 ev, v=fa.get_ eigenvalues ()

 ev=pd.DataFrame(list(ev) ,columns=['Eigen_values')

 ,index=[df.columns])

 # Create scree plot using matplotlib

 plt.scatter(range(1,df,shape[1]+1),ev)

 plt.plot(range(1,df,shape[1]+1),ev)

 plt.title('Scree Plot')

 plt.xlabel ('Factors’)

 plt.ylabel('Eigenvalue')

 plt.axhline(y=1, c='k')

Out [6] : <matplotlib.lines.Line2D at 0xbf134d0>

We have to select all those factors which have eigen values greater than 1. Hence, number of

factors = 6.

Now we again have to create factor analysis model but selecting n =6 and also estimating

loadings.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 14 – Factor Analysis

161

ISBN 978-93-80788-93-7

In [7]: #Create factor analysis object and perform factor analysis

 fa=FactorAnalyzer(n_factors=6,rotation=”varimax”)

 #please check definition of varimax at below

 fa.fit(df)

 fa.loadings=fa.loadings_

 fa.loadings=pd.DataFrame(list(fa.loadings),columns=[‘Factor1',

 'Factor2', 'Factor3', 'Factor4','Factor5','Factor6'],index=

 df.columns)

 fa.loadings

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 14 – Factor Analysis

162

ISBN 978-93-80788-93-7

Factor 1 has high factor loading for ‘area_mean’

Factor 2 has high factor loading for ‘compactness_se’

Factor 3 has high factor loading for ‘smoothness_worst’

Factor 4 has high factor loading for ‘smoothness_se’

Factor 5 has high factor for ‘texture worst’

Factor 6 has high factor for ‘symmetry worst’

Let’s try to visualize loadings with variables
In [8]: import numpy as np

 Z=np.abs(fa.loadings)

 fig, ax= plt.subplot()

 c = ax.pcolor(Z)

 fig.colorbar(c,ax=ax)

 ax.set_ytricks(np. arange (fa. loading.shape [0]) +0. 5,

 minor=False)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 14 – Factor Analysis

163

ISBN 978-93-80788-93-7

 ax.set_xtricks(np. arange (fa. loading.shape [1]) +0.5,

 minor=False)

 ax.set_ytricklabels(fa.loadings.index.values)

 ax.set_xtricklabels(fa.loadings.columns.values)

 plt.show()

Let us find out how much these factors are explaining variations in data.
In [9]: output=fa.get_factor_variance()

 Output=pd.DataFrame(list(output),columns=[‘Factor1',’Factor2',

 'Factor3','Factor4','Factor5','Factor6'), index=['SS loadings',

 'ProportionVar', 'Cumulative Var])

 Output

These 6 factors explain more than 85% of the data.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 14 – Factor Analysis

164

ISBN 978-93-80788-93-7

Other Terminologies:

1. Varimax rotation: Varimax rotation (also called Kaiser – Varimax rotation) maximizes

the sum of the variance of the squared loadings, where ‘loadings’ means correlations

between variables and factors. This usually results in high factors loadings for a smaller

number of variables and low factor loadings for the rest.

2. Eigen values: Eigen values shows variance explained by that particular factor out of total

variance.

3. Factor loading: Factor loading is correlation coefficient for the variable and factor. Factor

loading shows the variance explained by the variable on that particular factor.

14.4 References

1. https://iescoders.com/exploratory-factor-analysis

2. https://www.py4e.com/lessons

3. https://scikitlearn.org/stable/modules/generated/sklearn.decomposition.FactorAnaly

sis.html

4. https://www.statisticssolutions.com/factor-analysis-sem-factor-analysis

5. Dr. Santosh P. Gite (2018), Factoranalysis, Dr. Asha Jindal (ed.) Analysing and visualizing

data with R software, ShailajaPrakashan and Kishinchand Chellaram College, pp181-188.

6. Dr. Asha Jindal (2013), Factorinfluencing infant mortality in Uttar Pradesh, International

Journal of Multidisciplinary Research, Vol I, Issue 10(I), pp 65-70.

https://www.py4e.com/lessons
https://scikitlearn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html
https://scikitlearn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html
https://www.statisticssolutions.com/factor-analysis-sem-factor-analysis

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 15 – Cluster Analysis

165

ISBN 978-93-80788-93-7

Chapter 15

Cluster Analysis

Mr. Abhay Deshpande, Freelance Researcher, Alumni 2019, Statistics,

K. C. College

15.1 Introduction

Cluster analysis or clustering is grouping of cases based on similarities and other numerical

attributes of variables in the sample or population under study. Cluster analysis is useful for

unsupervised machine learning. Unsupervised learning is used to solve problems in machine

learning which have unknown solutions. In this case study, problem is solved using

Agglomerative Hierarchical clustering. Idea behind this method is to form different clusters

using bottom up approach i.e. considering every observation as a cluster then combining

them together until a single cluster is formed starting from the bottom.

For this, a dendrogram is used using the dissimilarities between the observations in the data.

A dendrogram is a diagram similar to tree diagram. Using the dendrogram, different clusters

are then formed by calculating the distances between the observations.

Simplest way to calculate the distance between any two points in two dimensions is

𝑑 = √(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2

where, d = distance. This method of calculating distance is known as Euclidean method. The

general procedure of Agglomerative Hierarchical clustering is as follows:

1. Step 1: Consider each observation in the data as a single cluster so that in general our

data has let’s says ‘k’ clusters.

2. Step 2: Take two closest observations and make one cluster of them. So now we have ‘k-

1’ clusters.

3. Step 3: Continue with step 2 procedure until we have a single cluster.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 15 – Cluster Analysis

166

ISBN 978-93-80788-93-7

Next part is fitting of clusters to the data provided and visualisation, which we will discuss

in the procedure.

15.2 Procedure

In [1]: # Importing the libraries

 import numpy as np

 import matplotlib.pyplot as plt

 import pandas as pd

Before importing the dataset it is advised to create a working directory and set it up. It can

be done using the os.chdir() command.

In [2]: # Importing the dataset with pandas

 dataset = pd.read_csv(“C:/User/Admin/Desktop/dataset.csv”)

 print(dataset)

 #Indexing the variables to be used from the dataset

 X = dataset.iloc[:,[1,9]].values

 print(X)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 15 – Cluster Analysis

167

ISBN 978-93-80788-93-7

In [3]: # using dendogram to find the optimal number of cluster

 import scipy.cluster.hierarchy as sch

 dendrogram = sch.dendrogram(sch.linkage(X, method = ‘ward’))

 plt.title(‘Dendrogram’)

 plt.xlabel(‘Different cars’)

 plt.ylabel(‘Height’)

 plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 15 – Cluster Analysis

168

ISBN 978-93-80788-93-7

Understanding the dendrogram and calculating the number of clusters formed is most

important. For that, just see the longest line which is not intersected by a horizontal line i.e.

in this case blue line just above green horizontal line. Similar can be seen in case of blue and

red lines. After that, see in how many parts those intersected horizontal lines are divided.

Here we get a total of five clusters. Next diagram shows how it can be observed.

In [4]: #Fitting hierarchical clustering to data

 from sklearn.cluster import AgglomerativeClustering

 ahc=AgglomerativeClustering(n_cluster=5, affinity = 'euclidean',

 linkage='ward')

 pred= ahc.fit_predict(X)

 print(ahc)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 15 – Cluster Analysis

169

ISBN 978-93-80788-93-7

 print(pred)

 AgglomerativeClustering(affinity='euclidean',

 compute_full_tree='auto',

 connectivity=None,distance_threshold= none,

 linkage='ward',memory=none,n_cluster=5,

 pooling_func='deprecated')

 [1 1 0 0 1 1 2 0 0 1 1 2 2 2 4 4 2 3 3 3 0 2 2 2 1 0 0 3 2 1 2 0]

In [5]: #Visualizing Clusters

 plt.scatter(X[pred==0,0],X[pred==0,1],s=27, c=’orange’,label=’cluster1’)

 plt.scatter(X[pred==1,0],X[pred==1,1],s=27, c=’red’,label=’cluster2’)

 plt.scatter(X[pred==2,0],X[pred==2,1],s=27, c=’violet’,label=’cluster3’)

 plt.scatter(X[pred==3,0],X[pred==3,1],s=27, c=’indigo’,label=’cluster4’)

 plt.scatter(X[pred==4,0],X[pred==4,1],s=27, c=’brown’,label=’cluster5’)

 plt.title(‘Visualization of Clusters‘)

 plt.xlabel(‘component 1’)

 plt.ylabel(‘component 2’)

 plt.legend()

 plt.show()

Interesting part to note is we have plotted multidimensional data in just two dimensions for

simplicity. Further one may note that according to the data, types of cars may be categorized

in two types as performance heavy/ super cars and pocket friendly. Cars who deliver high

end performance are generally having more number of cylinders, greater fuel displacement

capacity in engines to generate more horsepower etc. hence buyers pay a premium price. On

the other hand, budget cars provide more miles per gallon having less fuel displacement

capacity, number of cylinders in the engine etc.

15.3 Acknowledgement

I would like to thank my parents and Dr. Asha Jindal, Associate Professor and Head,

Department of Statistics, K. C. College for her encouragement and support.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 15 – Cluster Analysis

170

ISBN 978-93-80788-93-7

15.4 References

1. https://docs.anaconda.com/_/downloads/en/latest/pdf/

2. https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf

3. https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.

html

4. https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html

https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://scikit-/

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 16 – Non-Parametric Test

171

ISBN 978-93-80788-93-7

Chapter 16

Non-Parametric Test

(Choice and Application using Python)

Dr. S. B. Muley, Assistant Professor, Department of Statistics,

K. C. College

16.1 Introduction

Processed information has become a key to many decision making systems. Data has become

an inevitable part of all the business models, research and education. Not only educational

Institutions of international repute but business firms like IBM, Microsoft, SAS and many

more has come out with courses and training methods on analysis of data. Data is generated

by many sources, some of the data is result of planned experiments and some are results of

real time processes. Basic types of such data can be of nominal, ordinal and scale type. All

these information/data can further be processed for the purpose of

1. To derive some patterns/trends from the populations.

2. To test some assumptions about populations.

3. To develop prediction models. etc.

Hypothesis testing is standard procedure of testing assumptions about population

distribution in basic statistics. Due to this reason, statistical inference has become the field

of interest of many researchers and data scientists. The inferential type research is very

common and frequent type of research. The inferential type research can be a part of many

other research types like Experimental, Exploratory, Quantitative, Qualitative, Analytical,

Conceptual etc. The steps (Fig.1) in process of research, very precisely, given by Kothari C.

R.[1].

Fig.1: Research process flowchart from “C. R. Kothari (2009) "Research Methodology:

Methods&Techniques" (Second Revised Edition), New Age International Publishers, New

Delhi.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 16 – Non-Parametric Test

172

ISBN 978-93-80788-93-7

Analysis of Data is one of the important steps in the research process. In statistical theory of

inference this procedure is called as testing of hypothesis if the analysis of data is

imperatively for the purpose of testing of hypothesis. This testing of hypothesis process

comprises of following steps:

1. Defining objective and problem statement precisely.

2. Formulate null and alternate hypothesis.

3. Decide on level of significance.

4. Choose an appropriate statistical test.

5. Using an appropriate decision rule, decide whether null hypothesis to be accepted or

rejected.

6. Interpret and conclude the results with respect to problem statement.

Data analysis requires choosing an appropriate statistical test for analysis from parametric

and non-parametric domain. This choice of the test is depending on following criteria:

➢ Type of Hypothesis (Association or Difference type).

➢ Number of dependent and independent variables.

➢ Type of variables (Nominal, Ordinal and Interval or Ratio scale).

➢ Normal Distribution (test of Normality).

The basic conditions for choosing test from parametric domain are

1. The data should be measured on Interval/Ratio scale.

2. Data should satisfy the condition on normality.

If all of the above conditions are satisfied then we use parametric tests. On the contrary a

statistical method is called non-parametric if it makes no assumption on the population

distribution or sample size. This approach is less powerful yet more frequent, more flexible,

more robust, and applicable to quantitative and non-quantitative data.

On choosing appropriate statistical test for analysis one can use Excel, SPSS, MINITAB, SAS,

R-programming and Python programming etc. The packages like SPSS, MINITAB are menu

driven packages. SAS, R and Python are programing languages. The R and Python are the

important free and open source software used in data analytics and business analytics. In

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 16 – Non-Parametric Test

173

ISBN 978-93-80788-93-7

this chapter we have discussed use of python programming language to apply different non-

parametric tests on different types of data sets and different types of cases.

Statsmodels is a Python module that provides classes and functions for conducting statistical tests.

The statsmodel functions on nonparametric statistics are used to evaluate nonparametric test. Another

platform used for evaluation is SciPy. This is a collection of mathematical algorithms and convenience

functions built on the NumPy extension of Python. SciPy is interactive Python platform for data-

processing.

16.2 One Sample Tests

The purpose of one sample test is to test the significance of difference between sample and

population median.

Sign test:

Basic conditions for applying test: One-sample data and median.

Syntax used:

statsmodels.stats.descriptivestats.sign_test(samp,mu0=test median)

Parameters

samp: One dimensional array of data for which you want to perform the signs test.

mu0: The population median against which data is to be tested.

Returns

1. The signs test returns M = (N(+) - N(-))/2, where N(+) is the number of values above

mu0, N(-) is the number of values below. Values equal to mu0 are discarded.

2. The p-value for M is calculated using the binomial distribution and can be interpreted the

same as for a t-test. The test-statistic is distributed Bin(min(N(+), N(-)), n_trials, where

n_trials equals N(+) + N(-).

Example1:

It is known from the past experience that the median length of fish in a particular polluted

lake was 3.9 inches. During the past two years the lake was cleaned up and the conjecture is

made that now median length is greater than 3.9 inches. A random sample of 10 sunfish

selected from this lake showed lengths as 5.2, 4.1, 5.4, 5.7, 3.0, 6.3, 6.6, 2.8, 1.9, 4.5 inches.

Will you reject the null hypothesis at 10 % level of significance (l.o.s.) on the basis of Sign

Test?
In [1] *Sign test tests the hypothesis type of two sided.

 import scipy as sp

 import numpy as np

 import pandas as pd

 import statsmodels.stats.descriptivestats as smsd

In [2]: # Enter for comparison by using any of the known of method and

 entry and choose variable to be tested.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 16 – Non-Parametric Test

174

ISBN 978-93-80788-93-7

data-(5.2, 4.1, 5.4, 5.7, 3.0, 8.3, 6.6, 2.2, 4.5)

In[3]: # Give test median value.

 med=float(input("Test median:"))

 print ('Data for comparison:'+str(data))

 print('\n')

 print ('The test results is')

 print('\n')

 stat,p=smsd.sign_test(data, mu0=med)

 print('Statistics=%.3f, p=%.3f' %(stat, p))

In [4] : # interpret

 alpha = 0.05

 if p > alpha:

 print('Fail to reject HO')

 else:

 print('Reject HO')

Fail to reject HO

Interpretation: Since p-value=0.3437> 0.025 indicates one should not reject null

hypothesis.

Note: This test can also be used to test the significance of difference between two paired

observation by using difference data (d=x-y) as one dimensional data as samp and mu0=0.

16.3 Two Sample Tests

Independent sample comparison:

The two-sample Mann–Whitney U test compares values for two groups. A significant result

suggests that the values for the two groups are different. It is equivalent to a two-sample

Wilcoxon rank-sum test.

Basic conditions for applying test:

➢ Two-sample data: One-way data with two groups only.

➢ Type Dependent variable: is of the type Ordinal, Interval, or Ratio.

➢ Independent variable is a factor with two levels. That is, two groups.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 16 – Non-Parametric Test

175

ISBN 978-93-80788-93-7

➢ Observations between groups are independent. That is, not paired or repeated measures

data.

➢ In order to be a test of medians, the distributions of values for each group need to be of

similar shape and spread; outliers affect the spread. Otherwise the test is a test of

distributions.

Syntax:

scipy.stats.mannwhitneyu (x, y, use_continuity=True, alternative=None)

or

stats.mannwhitneyu (x, y, use_continuity=True, alternative=None)

It computes the Mann-Whitney rank test on samples x and y.

Parameters

1. x, y like Array of samples, should be one-dimensional.

2. use_continuity optional and takes values True or False. Whether a continuity correction

(1/2) should be taken into account. Default is True.

3. alternative {None, ‘two-sided’, ‘less’, ‘greater’}, optional. Defines the type of alternative

hypothesis.

Returns

1. U-value: The Mann-Whitney U statistic, equal to min(U for x, U for y) if alternative is

equal to None (deprecated; exists for backward compatibility), and U for y otherwise.

2. p-value: p-value assuming an asymptotic normal distribution. One-sided or two-sided,

depending on the choice of alternative.

Example 2:

Consider a Phase II clinical trial designed to investigate the effectiveness of a new drug to

reduce symptoms of asthma in children. A total of n=10 participants are randomized to

receive either the new drug or a placebo. Participants are asked to record the number of

episodes of shortness of breath over a 1 week period following receipt of the assigned

treatment. The data is given below.

X 7 5 6 4 12

Y 3 6 4 2 1

Is there a difference in the number of episodes of shortness of breath over a 1 week period

in participants receiving the new drug as compared to those receiving the placebo? By

inspection, it appears that participants receiving the placebo have more episodes of

shortness of breath, but is this statistically significant? Use Mann-Whitney-Wilcoxon test

at 5% l.o.s. to test H0 :Mx = My against H1: Mx<My (use normal approximation.)
In[1]: #comparison of two variables using Mann—Whitney U test

 import scipy.stats as st

 from scipy import stats

 import scipy.stats as mannwhitneyu

 from scipy import stats

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 16 – Non-Parametric Test

176

ISBN 978-93-80788-93-7

In[2]: #enter data of two variables as x and y

 x=[7,5,6,4,12]

 y=[3,6,4,2,1]

In [3]: stat, p=stats.mannwhitneyu(x,y, use_continuity = True, alternative

 = 'two—sided')

 print (" The results of mann-whitney U test are ")

 print ("\n")

 print ('Statistics=%.3f, p=%.3f' %(stat, p))

In[6]: #interpret

 alpha= 0.05

 if p > alpha:

 print ('same distribution (Fail to reject HO)')

 else:

 print('Different distribution (Reject HO)')

 Same distribution (Fail to reject HO)

Interpretation: p-value greater than that of 0.05 at 5% level of significance indicates that

on should not reject null hypothesis.

Paired sample comparison:

Conditions of paired sample data:

➢ Two-sample paired data: That is, one-way data with two groups only, where the

observations are paired between groups.

➢ Dependent variable may be of ordinal, interval, or ratio type.

➢ Independent variable is a factor with two levels of pair like Before-After.

➢ The distribution of differences in paired samples is symmetric.

Wilcoxon signed-rank test in python:

Syntax: scipy.stats.wilcoxon(x, y=None, zero_method='wilcox', correction=False,

alternative='two-sided')

The Wilcoxon signed-rank test is the counter test used against paired sample t-test. This test

tests the null hypothesis that two related paired samples come from the same distribution.

That is, tests whether the distribution of the differences x - y is symmetric about zero.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 16 – Non-Parametric Test

177

ISBN 978-93-80788-93-7

Parameters

1. x: One dimensional array such that it is either the first set of data when x and y is given

or one can use differences between two sets of measurements (d=x-y, as x) [in this case

in place of x values difference is entered and in place of y, none is entered.

2. y: (optional), One dimensional array such that either the second set of data (in case ifx,

the first set of data, is specified), or not specified by mentioning none (in case if x is the

set data of differences between two sets (d=x-y, as x) of data.)

3. zero_method: (optional){‘pratt’, ‘wilcox’, ‘zsplit’}

The following options are available (default is ‘wilcox’):

➢ ‘pratt’: Includes zero-differences in the ranking process, but drops the ranks of the zeros.

➢ ‘wilcox’: Discards all zero-differences, the default.

➢ ‘zsplit’: Includes zero-differences in the ranking process and split the zero rank between

positive and negative ones.

4. correction: (Either True or False), optional. If True, apply continuity correction by

adjusting the Wilcoxon rank statistic by 0.5 towards the mean value when computing the

z-statistic. Default is False.

5. alternative: (optional) {“two-sided”, “greater”, “less” if the alternative hypothesis type

is two-sided, greater than type, less than type respectively}. Default is “two-sided”.

Returns

1. statistic: If alternative is “two-sided”, the sum of the ranks of the differences above or

below zero, whichever is smaller. Otherwise the sum of the ranks of the differences above

zero.

2. p-value: The p-value for the test depending on alternative.

Example 3:

Test scores of a group of 15 high – school students before &after a training programme are

as given below :

Score before 63 75 78 84 58 58 70 76 74 88 74 94 99 79 93

Score after 84 86 75 94 50 95 97 98 72 100 101 98 105 84 90

Use appropriate statistical test at to check if the training has any effect on the test scores.

Hypothesis:

H0 :Mx =My ; H1: Mx< My

X: score before training (Median of corresponding distribution is Mx)

Y: score after training (Median of corresponding distribution is My)

In [1]: #comparison of two variables (Before-After) using Wilcoxon Signed

 rank test

 from scipy import stats

 from scipy.stats import wilcoxon

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 16 – Non-Parametric Test

178

ISBN 978-93-80788-93-7

In [2]: # enter data of two variables as x and y

 #Scores before training program

 x=[63, 75, 78, 84, 58, 58, 70, 76, 74, 88, 74, 94, 99, 79, 93]

 #Scores after training program

 y=[84,86,75,94,50,95,97,98,72,100,101,98,105,84,90]

In[3]: print ("comparison of two variables (Before -After) using Wilcoxon

 Signed rank test")

 #test evaluation

 stat,p = stats.wilcoxon(x,y, zero_method='wilcox', correcticn=False,

 alternative = 'less')

 print ('Results of Wilcoxon Signed rank test test')

 print ('Statistics=%.3f, p=%.3f' %(stat, p))

 comparison two variables (Before-After) using Wilcoxon Signed rank test

 Results of Wilcoxon Signed rank test test

 Statistics=13.000, p=0.004

In [4]: #interpret

 alpha = 0.05

 if p > alpha:

 print ('(Fail to reject H0)')

 else:

 print('(Reject HO)')

 (Reject HO)

Interpretation: Since p-value=0.004< 0.01 indicates that one should reject null hypothesis.

16.4 More than Two Sample Tests

Independent sample comparison (Kruskal–Wallis H):

Kruskal–Wallis H tests the significance of difference between the medians of more than two

groups, which may have different sizes. This test is commonly called as Non-parametric

ANOVA or Kruskal-Wallis test.If the result of the Kruskal-Wallis test is significant, then we

go for post-hoc test. Here we will use Dunn’s test to find which pair of the groups are showing

significance when compared pairwise.

Basic conditions for applying test:

➢ One-way data.

➢ Dependent variable is ordinal, interval, or ratio.

➢ Independent variable is a factor with two or more levels. That is, two or more groups.

➢ Observations between groups are independent. That is, not paired or repeated measures

data.

➢ In order to be a test of medians, the distributions of values for each group need to be of

similar shape and spread. Otherwise the test is a test of distributions.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 16 – Non-Parametric Test

179

ISBN 978-93-80788-93-7

It performs a Kruskal-Wallis rank sum test.

Syntax: scipy.stats.kruskal(*args, **kwargs)

Compute the Kruskal-Wallis H-test for independent samples.

Parameters

1. sample1, sample2, …array_like two or more arrays with the sample measurements can

be given as arguments.

2. nan_policy{‘propagate’, ‘raise’, ‘omit’}, optional

Defines how to handle when input contains nan. The following options are available (default

is ‘propagate’):

➢ ‘propagate’: returns nan

➢ ‘raise’: throws an error

➢ ‘omit’: performs the calculations ignoring nan values

Returns

1. statistic: The Kruskal-Wallis H statistic, corrected for ties.

2. p-value: The p-value for the test using the assumption that H has a chi square

distribution.

Example 4:

Test whether there exists a significance of difference between the scores of three groups

when compared against each other for the following given data set. Use 5% l. o. s. Also use

post-hoc test to find the exact significance.

Group 1 63 75 78 84 58 58 70 76 74 88 74 94 58 79 93

Group 2 84 86 75 94 50 95 97 98 72 100 101 98 105 84 90

Group 3 74 76 65 84 50 85 97 88 72 90 101 98 115 94 90

Hypothesis:

H0: There is no significance of difference between the median of three groups.

H1: At least one pair of groups differs significantly in their median when compared.
In [1]: #Kruskal-Wallis test for comparison of more than two independent

 variables

 import numpy as np

 import pandas as pd

 from scipy import stats

 from scipy. stats import kruskal

In[2]: #enter data of three variabies as x, y and z

 x=np.array([63,75,78,84,58,58,70,76,74,88,74,94,58,79,93])

 y=np.array([84,86,75,94,50,95,97,98,72,100,101,98,105,84,90])

 z=np.array([74,76,65,84,50,85,97,88,72,90,101,98,115,94,90])

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 16 – Non-Parametric Test

180

ISBN 978-93-80788-93-7

In[3]: #Calculation of Kruskal—Wallis is test

 stat,p=stat3.kruskal(x, y, z)

 print('Results of Kruskal—Wallis test')

 print('Statistics=%.3f, p=%.3f %(stat, p))

Results of Kruskal—Rallis test

Statistics=8.383, p=0.015

In[4]: # interpret

 alpha = 0.05

 if p > alpha:

 print(' (Fail to reject H0)')

 else:

 print('(Reject H0)')

 (Reject HO)

Interpretation: Since p-value =0.015< 0.05 indicates one should reject null hypothesis and

conclude that there exists significance of difference between the scores of three group at 5%

l.o.s.

Repeated measure comparison (Friedman-Chi-Square):

The Friedman test tests the null hypothesis that repeated measurements of the same

individuals have the same distribution. It is considered as the extension of paired t-test.

Syntax: scipy.stats.friedmanchisquare(*args)

It computes the Friedman test for repeated measurements

Parameters

1. measurements1, measurements2, measurements3... : Arrays of measurements. All

of the arrays must have the same number of elements. At least 3 sets of measurements

must be given.

Returns

1. statistic :The test statistic, correcting for ties.

2. p-value :The associated p-value assuming that the test statistic has a chi squared

distribution.

Example 5

The study is planned to measure a stress level on four consecutive days of week. 10

individuals were randomly selected and their stress is measured on Day-1 to Day-4 using a

10 point stress scale in which score 10 indicates highest stress. Test the significance of

difference between the stress levels on four days.

Subject Day-1 Day-2 Day-3 Day-4

1 8 7 6 7

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 16 – Non-Parametric Test

181

ISBN 978-93-80788-93-7

2 5 8 5 6

3 6 5 3 4

4 6 6 7 3

5 8 10 8 6

6 6 5 6 3

7 6 5 2 3

8 9 9 9 6

9 5 4 3 7

10 7 6 6 5

Hypothesis:

H0: There is no significance of difference between the median scores on four days.

H1: There is significance of difference between the median scores on four days.

In [1]: #Friedman chi square test to compare repeated measure data

 import numpy as np

 import pandas as pd

 from scipy import stats

 from scipy.stats import friedmanchisquare

In [2]: #enter data of Four time points as Dayl, Day2, Day3 and Day4

 Dayl=np.array([8,5,6,6,8,6,6,9,5,7])

 Day2=np.array([7,8,5,6,10,5,5,9,4,6])

 Day3=np.array([6,5,3,7,8,6,2,9,3,6])

 Day4=np.array([7,6,4,3,6,3,3,6,7,5])

In [3]: #Calculation of Friedman chi square test

 stat,p=stats.friedmanchisquare(Dayl,Day2,Day3,Day4)

 print("The results of fliedman chi square test is ")

 print('Statistics=%.3f,p=%.3f' %(stat, p))

The results of friedman chi square test is

Statistics=7.967, p=0.047

In[4]: # interpret

 alpha = 0.05

 if p > alpha:

 print('(Fail to reject H0)')

 else:

 print('(Reject H0)')

 (Reject HO)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 16 – Non-Parametric Test

182

ISBN 978-93-80788-93-7

Interpretation: Since p-value =0.047< 0.05 indicates one should reject null hypothesis and

conclude that There is significance of difference between the median scores on four days at

5% l.o.s.

References

1. C. R. Kothari (2009) "Research Methodology: Methods & Techniques" (Second Revised

Edition), New Age International Publishers, New Delhi.

2. Daniel W.W.:Applied Non Parametric Statistics, First edition Boston-Houghton Mifflin

Company.

3. Mark Lutz, “Learning Python”, 5th Edition, O'Reilly Media

4. Seabold, Skipper, and Josef Perktold. “statsmodels: Econometric and statistical modeling

with python.” Proceedings of the 9th Python in Science Conference. 2010.

http://www.oreillynet.com/pub/au/446
https://learning.oreilly.com/library/publisher/oreilly-media-inc/

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 17 – Case study of Polio in Greater Mumbai

183

ISBN 978-93-80788-93-7

Case Studies

Case study of Polio in Greater Mumbai

Ms. Anjali Sutar and Ms. Priyanka Chataule

Assistant Professors, Department of Statistics, K.C. College

17.1 Introduction

The data we posse analysis the polio cases in Greater Mumbai from 1960 to 1975. We

selected this data set because polio has not only been one of the most infectious and

dangerous diseases but was also the corner stone in research in how we fought diseases like

this. Polio research led to the usage of vaccinations in modern medicine to combat viruses.

Poliomyelitis, often called polio, is an infectious disease caused by the poliovirus. Once

known as Infantile Paralysis, the term "poliomyelitis" is used to identify the disease caused

by any of the three types of poliovirus. Poliomyelitis has existed for thousands of years, with

depictions of the disease in ancient art. The virus that causes it was first identified in 1908.

Three serotypes of poliovirus have been identified—poliovirus type 1 (PV1), type 2 (PV2),

and type 3 (PV3). All three are extremely virulent and produce the same disease

symptoms. PV1 is the most commonly encountered form, and the one most closely

associated with paralysis.

17.2 Problem Statement

Poliomyelitis is a crippling disease with dramatically visible impact on the patient. Over the

last fifty years the disease has been brought under control by the use of oral vaccine. It is of

considerable interest to identify trend, seasonality and other features of data on incidence

of polio.

Through this data we wish to analysis how this kind of deadly disease spreads and how

world events impact the spread of these diseases.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 17 – Case study of Polio in Greater Mumbai

184

ISBN 978-93-80788-93-7

17.3 Objectives

➢ Features of data on incidence of polio

➢ To identify trend and seasonality

➢ To prepare appropriate conclusion from our data analysis

17.4 Data Description

The data “polio data.csv” consists of 3 sets of variables for us to analysis.

➢ Year

➢ Month

➢ Number of polio cases

17.5 Methods

The first step we took was to clean the data before analysis. Since there was data missing for

1 month for Year 1960 and 11 months for Year 1975, we had to exclude while considering

any yearly based calculations. Since all months had 14 data entries, we didn’t have to clean

any data while monthly calculations.

We utilised mathematical statistics techniques like mean, median, mode, Time Series and

Trend Analysis, graph plotting to analysis the data.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 17 – Case study of Polio in Greater Mumbai

185

ISBN 978-93-80788-93-7

17.6 Data Analysis and Coding

In[1]: #Importing important libraries

 import os # helps to change directory

 import pandas as pd # Used for creating and analyzingdataframes

 import numpy as np # Used for numerical calculations

 import matplotlib.pyplot as plt # Used for plotting

 import seaborn as sns # Used for Plotting

 os.chdir ("C:/Users/Admins/Desktop")

 po=pd.read_csv("C:/Users/Admin/Desktop/polio data.csv")

 #Find info on data

 po.info()

In[2]: # To check number of nun values

 print ("Number of missing values in our data are \n{}" .format

 (str(po.isnull)(). sum())))

 Number of missing values in our data are

 Month: 0

 Year : 0

 cases: 0

 dtype: int64

 In [3]: pd.pivot_table(po,values='cases', index=['Month'], aggfunc=np.sum)

In [6]: pd.pivot_table(po,values='cases', index=['Month'],

 aggfunc=np.sum).plot.bar()

 plt.xlabel('Month')plt.xticks([0,1,2,3,4,5,6,7,8,9,10,11], ['Jan'

 ,'Feb','Mar','Apr','May','jun','Jul','Aug','Sep','Oct','Nov','Dec'])

 plt.ylabel('Number of Cases')

 plt.title("total Number of Cases each Month (1960-1975)")

 plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 17 – Case study of Polio in Greater Mumbai

186

ISBN 978-93-80788-93-7

In [7]: pd.pivot_table(po,values='cases',index=['Month'],

 aggfunc=np.mean)round()

In[8]: pd.pivot_table(po,values='cases', index=['Month'],

 aggfunc=np.mean).round().plot.bar()

 plt.xlabel('Month')

 plt.xticks([0,1,2,3,4,5,6,7,8,9,10,11],['Jan','Feb','Mar ','

 Apr','May’,'jun','Jul','Aug','Sep','Oct','Nov','Dec'])

 plt.ylabel('Number of Cases')

 plt.title("Average Number of Cases each Month (1960-1975)")

 plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 17 – Case study of Polio in Greater Mumbai

187

ISBN 978-93-80788-93-7

In [9]: pd.pivot_table(po, values=’Cases’, index=[‘Year’], aafunc=np.sum)

In[10]: pd.pivot_table(po,values='cases', index=['Year'],

 aggfunc=np.sum).plot.bar()

 plt.xlabel('Year')

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 17 – Case study of Polio in Greater Mumbai

188

ISBN 978-93-80788-93-7

 plt.ylabel('Number of Cases')

 plt.title("total Number of Cases each Year (1960-1975)")

 plt.show()

In[11]: #since there is uneven of cases in year 1975, we will consider you

 be better indicator

 pd.pivot_table(po, values='cases', index=['Year'], aggfunc

 =np.mean) . round()

In [12]: pd.pivot_table(po, values='cases', index=['Year'], aggfunc= np.

 mean).round().plot.bar()

 plt.xlabel('Year')

 plt.ylabel('Number of Cases')

 plt.title("Average Number of Cases each Month (1960-1975)")

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 17 – Case study of Polio in Greater Mumbai

189

ISBN 978-93-80788-93-7

 plt.show()

In[13]: #Number of cases per month each year

 po.[cases].plot()

 plt.ylabel('Number of Cases')

 plt.xlabel('Time period from 1960-1975')

 plt.xticks([],[])

 plt.title("Number of cases for period (1960-1975)")

 plt.show()

In[14]: po_year=po['Year']

 po_cases=po['Cases']

 plt.scatter(po_year, po_cases)

 z=np.polyfit(po_year,po_cases, 1)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 17 – Case study of Polio in Greater Mumbai

190

ISBN 978-93-80788-93-7

 p=np.poly1d(z)

 plt.plot(po_year,p(po_year),"r--")

 plt.ylabel('Number of Cases')

 plt.xlabel('Year')

 plt.title("Number of cases per year (1960-1975)")

 plt.show()

#This graph shows a increasing trendline for years showing that number of cases

has increased per year

In [15]: corr_plot=po.corr()

 corr_plot

In[16]: plt.imshow(corr_plot, cmap='hot',)

 plt.xlabel('Factors')

 plt.ylabel('Factors')

 plt.title("correlation Plot")

 plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 17 – Case study of Polio in Greater Mumbai

191

ISBN 978-93-80788-93-7

In[17]:corr_plot_sns=sns.heatmap(corr_plot, annot=Fa1se,vmax=1 vmin=1,

 center=0, cmap="rainbow", square=True,)

 corr_plot_sns.set_ylim(len(corr_plot)+0.5,-0.5)

 plt.title("correlation plot")

 plt.xlabel("Factors")

 plt.ylabel("Factors")

 # Its clear that cases are not correlaed with month

In [18]: import statsmcdels.api as sm

 from statsmodels.formula.api import ols

 lm=ols('cases~month',data=po).fit()

 lm

 table=sm.stats.anova_lm(lm)

 print(table)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 17 – Case study of Polio in Greater Mumbai

192

ISBN 978-93-80788-93-7

In [19]:def_chi_test(df,alpha):

 from scipy import stats

 contingency table=pd.crosstab (df["cases"],df["Month"])

 observed_values=contingency_table.values

 observed_values

 chisq_output=stats.chis2_contingency(contingency_table)

 chisq_output

 expected_values=chisq_output[3]

 chi_squared_stat=(((observed_values-expected_values)**2)/expected_

 values).sum().sum()

 print(chi_squared_stat)

 print(chisq_output)

 print(chisq_output[1])

 if chisq_output[1]>alpha:

 print("we do not reject HO")

 else :

 print("we do reject HO")

chi_ind_test(po,0.05)

In[20]: # we can not use chisquare result since frequencies are very small

17.7 Conclusion

We observe that polio cases were rising faster than compared to the population. Polio Cases

observed a seasonal trend, seeing sharp increase during rainy seasons and seeing sharp

decrease in summer seasons.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 17 – Case study of Polio in Greater Mumbai

193

ISBN 978-93-80788-93-7

World events like war cause sharp increase in polio cases. This shows lack of proper health

facilities for emergencies. Similarly, polio outbreak in other countries causes sharp increase

in polio cases in India too. Thus we fail to prevent entry of diseases from other containment

countries. We lack facilities to prevent entry of infected personnel’s Polio cases increased in

period 1960 to 1975.

17.8 Limitations

The data is from a secondary source. It is unclear whether the rise in case is because of

increase in people getting infected with polio or due to better methods to detect polio.

We assume that the polio cases in a month or year where infected in the same month or year.

We assume that there is no gap between when a person was infected and when the infection

was detected. Their might exist a latent period between when a person is infected, when the

infection is detected and when the case has been recorded.

17.9 References

1. Training Programme notes conducted by Pravesh Tiwari

2. https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-

80b61beca4b6

3. https://heartbeat.fritz.ai/seaborn-heatmaps-13-ways-to-customize-correlation-matrix-

visualizations-f1c49c816f07

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

194

ISBN 978-93-80788-93-7

Chapter 18

Analysis of Air Pollution in New Delhi

Mr. Rajesh Kalal and Mr. Shubham Gupta

DBT- Star College Status Scheme Researchers, Department of Statistics

18.1 Abstract

There is increasingly growing evidence linking urban air pollution to acute and chronic

illnesses amongst all age groups. Therefore, monitoring of ambient concentrations of various

air pollutants as well as quantification of the dose inhaled becomes quite important,

especially in view of the fact that in many countries, policy decisions for reducing pollutant

concentrations are mainly taken on the basis of their health impacts. The dose when gets

combined with the likely responses, indicates the ultimate health risk (HR). Thus, as an

extension of our earlier studies, HR has been estimated for three pollutants, namely,

suspended particulate matter (SPM), nitrogen dioxide (NO2) and sulfur dioxide (SO2) for

Delhi City in India. For estimation and analyses, three zones have been considered, viz.,

residential, industrial and commercial.

The total population has been divided into three age classes (infants, children and adults)

with different body weights and breathing rates. The exercise takes into account age-specific

breathing rates, body weights for different age categories and occupancy factors for different

zones. Results indicate that health risks due to air pollution in Delhi are highest for children.

For all age categories, health risks due to SO2 (HR_SO2) are the lowest. Hence, HR_SO2 has

been taken as the reference with respect to which HR values due to SPM and NO2 have been

compared. Taking into account all the age categories and their occupancy in different zones,

average HR values for NO2 and SPM turn out to be respectively 22.11 and 16.13 times more

than that for SO2. The present study can be useful in generating public awareness as well as

in averting and mitigating the health risks.

18.2 Data

The dataset contains the following features:

1. stn_code : Station code. A code given to each station that made the measurements.

2. sampling_date : The date when the data was recorded.

3. state : It represents the states whose air quality data is measured.

4. location : It represents the city whose air quality data is measured.

5. agency : Name of the agency that measured the data.

6. type : The type of area where the measurement was made.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

195

ISBN 978-93-80788-93-7

7. so2 : The amount of Sulphur Dioxide measured.

8. no2 : The amount of Nitrogen Dioxide measured.

9. rspm :Respirable Suspended Particulate Matter measured.

10. spm : Suspended Particulate Matter measured.

11. location_monitoring_station : It indicates the location of the monitoring area.

12. pm2_5 : It represents the value of particulate matter measured.

13. date : It represents the date of recording (It is cleaner version of 'sampling_date' feature)

18.3 Effects

Health costs of air pollution:

Asthma is the leading health problem faced by Indians. Not surprisingly, it accounts for more

than 50% of the health problems caused by air pollution.

The most important reason for concern over the worsening air pollution in the country is its

effect on the health of individuals. Exposure to particulate matter for a long time can lead to

respiratory and cardiovascular diseases such as asthma, bronchitis, COPD, lung cancer and

heart attack. The Global Burden of Disease Study for 2010, published in 2013, had found that

outdoor air pollution was the fifth-largest killer in India and around 620,000 early deaths

occurred from air pollution-related diseases in 2010. According to a WHO study, 13 of the

20 most-polluted cities in the world are in India; however, the accuracy and methodology of

the WHO study was questioned by the Government of India. India also has one of the highest

number of COPD patients and the highest number of deaths due to COPD.

Over a million Indians die prematurely every year due to air pollution, according to the non-

profit Health Effects Institute. Over two million children—half the children in Delhi—have

abnormalities in their lung function, according to the Delhi Heart and Lung Institute. Over

the past decade air pollution has increased in India significantly. Asthma is the most common

https://en.wikipedia.org/wiki/Particulates
https://en.wikipedia.org/wiki/Chronic_obstructive_pulmonary_disease
https://en.wikipedia.org/wiki/Global_Burden_of_Disease_Study
https://en.wikipedia.org/wiki/Chronic_obstructive_pulmonary_disease
https://en.wikipedia.org/wiki/File:Reasons_for_Concern.png

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

196

ISBN 978-93-80788-93-7

health problem faced by Indians and it accounts for more than half of the health issues

caused by air pollution.

Ambient air pollution in India is estimated to cause 670,00 deaths annually and particularly

aggravates respiratory and cardiovascular conditions including chronic bronchitis, lung

cancer and asthma. Ambient air pollution is linked to an increase in hospital visits, with a

higher concentration of outdoor pollution particulates resulting in emergency room visit

increases of between 20-25% for a range of conditions associated with higher exposure to

air pollution. Approximately 76% of households in rural India are reliant on solid biomass

for cooking purposes which contributes further to the disease burden of ambient air

pollution experienced by the population of India.

State-Wide Trends:

According to the WHO, India has 14 out of the 15 most polluted cities in the world in terms

of PM 2.5 concentrations.

Air Quality Index (AQI) is a number used to communicate the level of pollution in the air and

it essentially tells you the level of pollution in the air in a given city on a given day. The AQI

of Delhi was placed under the "severe-plus category" when it touched 574, by the System of

Air Quality and Weather Forecasting and Research. In May 2014, the World Health

Organization announced New Delhi as the most polluted city in the world. In November

2016, the Great smog of Delhi was an environmental event which saw New Delhi and

adjoining areas in a dense blanket of smog, which was the worst in 17 years.

2018 Air Pollution in New Delhi (PM2.5 AQI).

A surge on June 14 was caused by dust storms brought on by a combination of extreme heat

and powerful downdraft winds.

 Hazardous

 Very Unhealthy

 Unhealthy

 Unhealthy for Sensitive Groups

https://en.wikipedia.org/wiki/Air_quality_index
https://en.wikipedia.org/wiki/New_Delhi
https://en.wikipedia.org/wiki/Great_smog_of_Delhi
https://en.wikipedia.org/wiki/File:2018_Air_Pollution_in_NewDelhi_(PM2.5_AQI).svg

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

197

ISBN 978-93-80788-93-7

 Moderate

 Good

➢ The average annual SOx and NOx emissions level and periodic violations in industrial

areas of India were significantly and surprisingly lower than the emission and violations

in residential areas of India.

➢ Of the four major Indian cities, air pollution was consistently worse in Delhi, every year

over 5-year period (2004–2018). Kolkata was a close second, followed

by Mumbai. Chennai air pollution was least of the four.

Steps Taken:

➢ The government in Delhi launched an Odd-Even Rule in November, 2017 which is based

on the Odd-Even rationing method: This meant that cars running with number plates

ending in Odd digits could only be driven on certain days of the week, while the even digit

cars could be driven on the remaining days of the week.

➢ The Indian government has committed to a 50% reduction in households using solid fuel

for cooking

➢ Some goals set for future are:

• Clean up the transportation sector by introducing 1,000 electric public transport buses

to its 5, 50-string fee.

• Identify effective ways to inform the public about air pollution data.

• Launch new citizen science programs to better document exposures.

• Reduce Carbon Emissions: "According to Inter-governmental Panel on Climate Change,

to limit warming well below 2 degree Celsius, CO2 emissions should decline by about 20

per cent by 2030 and reach net zero around 2075; to limit warming below 1.5 degree

Celsius, CO2 emissions should decline by 50 per cent by 2030 and reach net zero by

around 2050.

18.4 Analysis

We use “dataset (3) (1).csv”. We began by importing the libraries we are going to need.

In [1]: # importing important libraries

 import cs # Helps to change directory

 import numpy as np # Used for numerical calculations

 import pandas as pd # Used for creating and analyzing dataframes

 import seaborn as sns # Used for plotting

 import metplotlib as plt # Used for plotting

 from skIearn import linear_model # Used for modeling purpose

 from pandas import DataFrame # Used for importing data

 import statsmodels.api as sm # Used for modeling purpose

 from sklearn.linear_model import linearRegression

 # Used for modeling purpose

https://en.wikipedia.org/wiki/Air_pollution
https://en.wikipedia.org/wiki/Delhi
https://en.wikipedia.org/wiki/Kolkata
https://en.wikipedia.org/wiki/Mumbai
https://en.wikipedia.org/wiki/Chennai
https://en.wikipedia.org/wiki/Odd%E2%80%93even_rationing

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

198

ISBN 978-93-80788-93-7

Then we are going to load the datafiles

In [2]: # read dataset using read_csv()-data.csv

 dataset=pd.read_csv("C:/Users/Admin/Desktop/dataset (3) (1).csv" ,

 encoding="ISO-8859-1")

 df=dataset.copy()

Initial level of investigation on dataset:

df.head()

df.info()

It returns range, column, number of non-null objects of each column, datatype and memory

usage.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

199

ISBN 978-93-80788-93-7

df.count()

It results in a number of non null values in each column.

df.describe()

Generate descriptive statistics that summarize the central tendency, dispersion, and shape

of a dataset’s distribution, excluding NaN values.

df.shape

It returns a number of rows and columns in a dataset.

df.isnull().sum()

It returns a number of null values in each column.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

200

ISBN 978-93-80788-93-7

Dropping of less valued columns:

1. stn_code, agency, sampling_date, location_monitoring_agency do not add much value to

the dataset in terms of information. Therefore, we can drop those columns.

2. Dropping rows where no date is available.

In [9]: df.drop(['stn_code', 'agency',’sampling_date’ 'location_monitoring_

 station'], axis=1, inplace=True)

 df= df.dropna(subset=['date'])

 df.columns

Out[9]: Index(['state', 'location', 'type', 'so2', 'no 2', 'rspm', 'spm',

 'pm2_5','date'],dtype=' object')

Creating a ‘year’ column:
In [10]: df['date']=pd.to_datetime(df['date'])

 df.head(5)

In [11]: dft ['year'] =df.date.dt.year

 df. head (5)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

201

ISBN 978-93-80788-93-7

Handling missing values:

The columns such as so2, no2, rspm, spm, pm2_5 are the ones which contribute much to our

analysis. So, we need to remove null from those columns to avoid inaccuracy in the

prediction. We use the Imputer from sklearn.preprocessing to fill the missing values in every

column with the mean.

In [12]: COLS=['so2', 'no2', 'rspm', 'spm', 'pm2_5']

In [13]: from sklearn.preprocessing import Imputer

 # invoking SimplerInmputer to fill missing values

 imputer = Imputer(missing_values=np.nan, strategy='mean')

 df [COlS] = imputer.fit_transform(df[COLS])

 df.head(5)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

202

ISBN 978-93-80788-93-7

In [15]: # checking to see if the dataset has any null values left over

 and the format

 print (df.isnull().sum())

so2 status:

In[16]: statewise_so2 = df[['so2','state']].groupby('state' ,as_index=

 False).median().sort_values(by='so2')statewise_s02.head(10)

A collection of estimates of past and future anthropogenic global so2 emissions. The cofala

et al. estimates are for sensitivity studies on so2 emission policies. Those most at risk of

developing problems if they are exposed to so2 are people with asthama or similar

conditions.

In [17]:#bar plot of so2 vs state

Statewise_so2.plot(kind=’bar’,x=’state’,y=’so2’)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

203

ISBN 978-93-80788-93-7

The plot shows the states with highest so2 levels in ascending order. We can see that

Uttaranchal has the highest so2 concentration. Nagaland has the least concentrations of so2

among the states.

Scatter plots of all columns:

In [18]: sns.set()

 cols=['so2', 'no2', 'rspm', 'spm', 'pm2_5']

 sns.pairplot(df[cols], size = 2.5)

 plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

204

ISBN 978-93-80788-93-7

The relationship between pm2_5 and any other feature is simply because pm2_5 has tons of

null values. So2 and no2 values are highly concentrated near to the origin. spm and rspm

share somewhat linear relationship, rest all features are not entirely related.

Correlation matrix:

In [19]: corrmat=df.corr()

 f, ax plt.subplots(figsize= (15,10))

 sns.heatmap(corrmat,vmax = 1,square = True, annot = True)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

205

ISBN 978-93-80788-93-7

It is clear from the correlation matrix that we have some correlation between spm and rspm,

which supports our scatter plot analysis.

Performing the Simple Linear Regression:

By applying linear regression we can take multiple X’s and predict the corresponding Y

values.

In [20]: X = np.array (df['so2']).reshape(—1, 1)

 y = np.array (df['n02']).reshape(—1, 1)

 df.dropna(inplace = True)

 regr = LinearRegression()

 regt.fit(X,y)

 print(regr.score(X, y))

 0.11053015931253296

In [21]: print('Intercept: \n' regr.intercept_)

 print('Coefficients: \n', regr.coef_)

 x = sm.add_constant (X) # adding a constant

 model = sm.OLS(y, X).fit()

 predictions = model . predict(X)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

206

ISBN 978-93-80788-93-7

 print_model = model.summary()

 print(print_model)

In[22] : # Selecting the 1st 1000 row of the data

 df1000 = df[:] [:1000]

 sns.lmplot(x = "so2", y ="no2",data = df1000, order = 2, ci = None)

In the graph, the dots are the true data and the line is linear model. The plot shows that the

data is highly positively skewed.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

207

ISBN 978-93-80788-93-7

Normality check using Shapiro-Wilk test:

In [28]: import pandas as pd

 from scipy. stats import shapirc

In [29]: x=(df['no2'])

 print(x)

In [30]: stat, p=shapiro(x)

In [31]: print(stat)

 0.7809625864028931

In [32] print(p)

 0.0

In [33]: alpha=O.05

 if p>alpha:

 print('sample looks Guass±an (fail to reject H0)')

 else:

 print('sample does not look Guass±an (reject H0)')

 sample does not lock Guassian (retject HO)

The p-value returned is less than 0.05 and finds that the data is not likely drawn from a

Gaussian distribution (normal distribution).

Visualization of data using Histogram Plot:
In [34]: from numpy. random import randn

 import matplotlib.pyplot as plt

In [35]: plt.title("histogram for normality check")

 plt.xlanel('x—axis')

 plt.ylabel'(y—axis')

 plt.hist(x,50)

 plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

208

ISBN 978-93-80788-93-7

The histogram plot shows the number of observations in each bin. We cannot see a Gaussian-

like shape to the data.

Visualization of data using QQ plot(Quantile-Quantile Plot):

In [36]: from statsmodels.graphics.gofplots import qqplot

In [37]: qqplot(x,line='s')

 plt.show()

The QQ plot shows the scatter plot of points is not in a diagonal line, closely fitting the pattern

for a sample from a positively skewed distribution.

Heatmap Pivot with state as Row, year as Col, no2 as value:

In [23]: f, ax = plt.subplots(figsize = (10,10))

 ax.set_title('{} by state and year'.fomat('so2'))

 sns.heatmap(df.pivot_table(so2', index = 'state',

 columns = ['year'], aggfunc = 'median', margins=True),

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

209

ISBN 978-93-80788-93-7

 annot = True, cmap = 'YIGnBu', linewidths = 1, ax = ax,

 cbar_kws = {'label': 'Average taken Annually'))

There has been a gradual increase of so2 concentration in Bihar from 1987 to 1999. The

presence of so2has been high from 1980 to 2000 in some states but has decreased in the new

country (from 2000).

rspm = PM10 - location wise - first 50:
In[24]: df[['rspm', 'location']].groupby(['location']) .median().

 sort_values("rspm", ascending = False).head(50).plot.bar(color = 'r')

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

210

ISBN 978-93-80788-93-7

What is the yearly trend in a particular state, say ‘Andhra Pradesh’?

We have created a new dataframe containing the NO2, SO2, rspm, and spm data regarding

state ‘Andhra Pradesh’ only and group it by ‘year’.

In [25]: andhra=df['state']=='Andhra Pradesh']

 year_wise_AP=andhra[['so2','no2','rspm','spm','year']].groupby

 ('year') .median()

 year_wise_ÄP.head()

In [26]: plt.plot(year_wise_AP['so2],'-sc',markersize = 3)

 plt.plot(year_wise_AP['so2],'-or', markersize = 3)

 plt.legend()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

211

ISBN 978-93-80788-93-7

In [27]: plt.plot(year_wise_AP['rspm],'-ob',markersize = 3)

 plt.plot(year_wise_AP['spm],'-om', markersize = 3)

 plt.legend()

This gave an alarming signal that the value spm in Andhra Pradesh is hiking. It’s 220 µg/m3

for the past 6 years (2010–2015).

Result:

Based on the various data visualization and analysis done it can be evaluated that most of

the pollutants vary within acceptable limits and do not have significant correlation amongst

other pollutants. However PM10 value is quite high for most of the months. As these readings

are for the Kadubeesanahalli sensor the reason for this excess PM10 level might be due to

high vehicular density in the vicinity. Along with that, other factors such as wind speed, road

repairs, building construction that result in high dust particles might also have some impact

on the variation in pollutant levels.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 18 – Analysis of Air Pollution in New Delhi

212

ISBN 978-93-80788-93-7

18.5 Conclusion

Based on data study and research carried out for the air pollutant dataset collected by PAQS

sensor device it can be inferred that the pollutant levels of some harmful particulate matters

such as PM10 are quite high in the air. One of the key sources for this seems to be the high

vehicle density in the location where this data was collected. As the pollutants are mostly

varying in a constant manner throughout the day the approximate pollutant levels can be

predicted for the next day for a particular temperature and relative humidity factor. Also

based on the observation it can be predicted that the pollutant levels vary based on the

vehicle density i.e. during peak hours it is quite high. Also, air pollutants are influenced by

the seasonal changes. In monsoon, the pollutant levels are low when compared to winter and

spring seasons where it is high and again in summer the pollutant levels go down.

18.6 References

1. https://www.kaggle.com/sharmamanali/air-quality-index-analysis-ml-visualisation

2. https://towardsdatascience.com/india-air-pollution-data-analysis-bd7dbfe93841

3. Training Programme notes conducted by Pravesh Tiwari

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

213

ISBN 978-93-80788-93-7

Chapter 19

Analyzing Happiness Development Index using

Python

Mr. Satvik Tandon, Mr. Alpesh Rathod and Mr. Gaurav Jadhav

DBT- Star College Status Scheme Researchers, Department of Statistics

19.1 Abstract

One of the most important macroeconomics indicator is Growth Development Product.

However, recent breakthroughs in economics have proved that while GDP might be a great

indicator of economic growth, it doesn’t actually indicate whether a country has observed

real growth or not. Since growth of a nation is not simply about economic growth but also

physical, mental and cultural growth, and aims to maximize happiness for its citizens;

Happiness Development index has been observed to be a better indicator.

Happiness Development Index considers multiple variables to decide whether people in a

nation are Happy or not. These variables are Family, Economics, Freedom, Government

Trust, and Generosity of people and Health (Life Expectancy).

The data I have is of HDI for years 2015, 2016 and 2017. The data consists of 6 indicators. I

have done analysis on the date using Python Software. We have analyze the data to find the

best country in each category, find the country with biggest gain, mean changes, correlation

between various factors and created a model to predict Happiness Score and find on what

factors does Happiness Score depend on. In this report I am going to share my findings and

give interpretations. Furthermore, I have added variable Ranks for each year to analyze how

many countries people are happy or not.

19.2 Understanding the Data

The data is for Happiness Index for years 2015, 2016 and 2017 for 158, 157 and 155

countries respectively. The variables in this dataset are:

1. Country – The country for which the values belong.

2. Region – The region to which the country it belongs to.

3. Happiness Score – The happiness Score the country had.

4. Economy (GDP per Capita) – Economy score of the country.

5. Family – The Family score of the country.

6. Health (Life Expectancy) – The health score of the country.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

214

ISBN 978-93-80788-93-7

7. Freedom – How free do the people of the country feel.

8. Trust (Government Corruption) – The amount of trust people have in the government

in the country.

9. Generosity – How much people believe other citizens in their country are generous in

nature.

We have also added the variable ‘Ranks’ to the dataset. Ranks is a categorical variable telling

whether people of a country are happy, okay or sad according to the happiness score.

19.3 Objectives

The aim of our study is to achieve the following goals:

1. To find the best country in various categories.

2. To find the country with the biggest gain and biggest decrease in happiness scores.

3. Add a variable indicating whether people in a country are happy or not.

4. To find how many countries are happy, okay and sad.

5. To test whether proportion of happy, okay and sad countries has changed or not.

6. To find correlation between various factors.

7. To make a model with Happiness Score has dependent variable and various independent

variables.

19.4 Methods

We utilized statistical techniques like linear regression modeling, measures of central

tendency, graphical illustrations, statistical tests like chi square and z proportion test, etc.

We created our own model using ordinary least square and tested by dividing our data into

2 parts. Python concepts like modeling, statistical testing, graphical representations,

refactoring, creating and calling functions, etc.

19.5 Analysis

Importing libraries:

We are using “Fifteen.csv”, “sixteen.csv” and “seventeen.csv”.

We began by importing the libraries we are going to need.

In[1]: # Importing important -libraries

 import os # Helps to change directory

 import pandas as pd # Used for creating and analyzing dataframes

 import numpy as np # Used for numerical calculations

 import matplotlib.pyplot as plt # Used for plotting

 import seaborn as sns # Used for plotting

 from scipy.stats import binom_test # Used for Z Test for proportions

 from sklearn import linear_model # Used for modelling purpose

 import statsmodels.api as sm # Used for modelling purpose

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

215

ISBN 978-93-80788-93-7

Importing Dataset:

Then we are going to load the datafiles. Since we have ranks given for year 2015 and 2016

in columns 2, we will declare those columns as index columns for respective datasets.

In [2]: os.chdir("C:/Users/Ädmin/Desktop")

 y2015 = pd.read_csv("C:/Users/Admin/Desktcp/Fifteen.csv", index col =2)

 y2016 = pd.read_csv("C:/Users/Admin/Desktop/3ixteen.csv", index col =2)

 y2017 = pd.read_csv("C:/Users/Admin/Desktop/seventeen.csv")

Using info () to find brief summary of the data. We will start by seeing a brief overview of

our data using formula dataset.info().

In [3]: # Find info on Data

 y2015.info()

 y2016.info()

 y2017.info()

Checking whether the dataset has any null values:

In [3] #To Check number of null values

 print('Number of missing values in data set 2015 is \n{}'.format

 (str(y2015.isnull ().sum()))

 print('Number of missing values in data set 2015 is \n{}'.format

 (str(y2016.isnull ().sum()))

 print('Number of missing values in data set 2015 is \n{}'.format

 (str(y2017.isnull ().sum()))

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

216

ISBN 978-93-80788-93-7

None of the dataset has any null values.

Countries similar in all three dataset:

However, each data set has unequal number of countries in it. We will find out those

countries which are available in all data set.

In [5]: # ===

#The below code check vhether a country which exists in 2015 also exists in

#2016 and 2017

#The above code thus checks whether a country in all three database

===

 same_countries = 0

 #same countries will store number of similiar countries

 same_countries_list = []

 # same_countries_list contains names of similiar countries

 for x in np.unique(y2015['Country']) :

 if x in np.unique(y2016['Country']):

 if x in np.unigue(y2017['Country']) :

 same_countries = same_countries+l

 same_countries list.append (x)

 print (same_countries)

 print (same_countries_list

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

217

ISBN 978-93-80788-93-7

There are 146 countries similar in all dataset. The list of those countries is given above.

Because of uneven number of countries and the data belonging to three different years, I will

not combine the dataset into one for analysis but rather keep it separately while conducting

analysis. Without knowing how the countries affect the dataset and analysis, it wouldn’t be

right to discard the data points. So, to maintain fair analysis the dataset is kept separated.

Best Country in Each Category:

We will now begin with Exploratory Data Analysis and focus on finding best countries in

various categories for all 3 years.

In [6]: def best_survey(df):

 to_test = to_test = range(2,8)

 print('According to the survey:')

 for y in to test:

This for loop changes the variable for which we are finding the best

 for x in range(0,len(df)):

#This for Loop changes the country for which we are testing the condition

 if df.iloc[x,y] == max(df.iloc[:,y])

#This checks whether this country has the highest value for y variable

 print('{} has the highest {} score among all

 nations ={}'.format(df.iloc[x,0],df.columns[y]

 ,str(df..iloc[x,y])))

This prints the variable and the country and the value

The above function will take the three datasets as input and then print the best country in

various categories for each year. By creating a function not only does the memory required

decrease but it also makes executing the same set of codes for three different countries much

easier. This also allows us to add new datasets without having to perform cumbersome code

additions. We will call the function using command best survey (DataFrame).

Results for 2015 survey
In [7]: best_survey(y2015)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

218

ISBN 978-93-80788-93-7

Results for 2016 survey
In [8]: best_survey(y2016)

Results for 2017 survey
In [9]: best_survey(y2017)

Finding the countries with the highest improvement and downfall:

The next goal was to find out which countries observed the most improvement and most

downfalls for each set of years. The code I created for this was:

In [10]: def change_in_scores(dfl,df2):

 max_p_change_country =""

 # Stores the name of the country with maximum positive change

 max_p_change_score = 0

 # Stores the most positive change in score

 max_n_change_country = ""

 # Stores the name of the country Vith maximum positive change

 max_n_change_score = 0

 # Stores the most positive change in score

 change scores = [] # Stores the change in score

 for x in range (0, len (dfl)):

 for y in range (0, len(df2)):

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

219

ISBN 978-93-80788-93-7

 if dfl.iloc[x, 0] == df2.iloc[y,0]:

 # Checks the data is for the sane country

 change_scores.append(df2.iloc[y,2] — dfl.iloc[x,2]

 # Store the changed value

 if (df2.iloc[y,2] - dfl.iloc[x, 2]) > max_p_change_score:

 max_p_change_score =df2.iloc[y,2] - dfl.iloc[x, 2]

 # This variable is to calculate the biggest improvement

 max_p_change_country = df2.iloc[y,O]

 elif (df2.iloc[y,2]—dfl.iloc[x, 2] < max_n_change score:

 max_n_change_score = df2.iloc[y,2] -df2.iloc[x,2]

 # This variable is to calculate the biggest downfall

 max_n_change_country = df2.iloc[y,0]

 print ("{} saw the biggest improvement in score ={}".format(max

 p_change_country,max p_change_score))

 print ("{} saw the biggest downfall in score ={}". format (max

 n_change country,max n_change_score))

We will call the function using command change_in_scores(DataFrame1, DataFrame2).

Results for 2015 to 2016
In [11]:change_in_scores(y2015,y2016)

 Algeria saw the biggest improvement in score = 0.75

 Liberia saw the biggest downfall in score = -0.9490000000000007

Results for 2016 to 2017
In [12]:change_in_scores(y2016,y2017)

 Bulgaria saw the biggest improvement in score = 0.49700022500000074

 Venezuela saw the biggest downfall in score = -0.8339999999999996

Results for 2015 to 2017
In [13]:change_in_scores (y2015, y2017)

 Latvia saw the biggest improvement in score = 0.7519999049999999

 Venezuela saw the biggest downfall in score = -1.5599999999999996

Distribution of Country in various Regions:

Finding out which regions do the country belongs to.
In [18]:print("2015:")

 pd.crosstab(y2015['Region'],columns = 'Country',dropna = True)

In [19]:print("2016:")

 pd.crosstab(y2016['Region'],columns = 'Country',dropna = True)

In [20]:print ("2017:")

 pd.crosstab(y2017 ['Region'],columns = 'Country',dropna = True)

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

220

ISBN 978-93-80788-93-7

Categorizing the country according to citizen’s happiness:

We will divide the countries into different categories (ranks) according to happiness score.

This will allow also performing better analysis and understanding which country’s citizens

are happy, okay or sad. The code used for this is:

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

221

ISBN 978-93-80788-93-7

In [21]: def_dividing_category(df) :

we will divide the scores into different categories and add those categories

into each database

 # More than 7 indicates Happy, between 7 and 5 indicates Okay and less than 5

indicates Sad

 cate= [] #Stores the category for country

 for x in range(0,len(df)) :

 if df.iloc[x,2] >= 7:

 cate.append('Happy')

 elif df.iloc[x,2] >= 5 and df.iloc[x,2]< 7:

 cate.append('Okay')

 elif df.iloc[x,2] < 5:

 cate.append(Sad)

 return(cate)

In [22]: y2015["Ranks"] = dividing_category(y2015)

 y2016["Ranks"] = dividing_category(y2016)

 y2017["Ranks"] = dividing_category(y2017)

Checking how many people are Happy, Okay and Sad for each year:

We will now see how many countries fall in each category.

In [23]: print("2015:")

 pd.crosstab(y2015['Ranks], columns = 'count')

In [25]: print("2016:")

 pd.crosstab(y2016['Ranks], columns = 'count')

In [26]: print("2017:")

 pd.crosstab(y2017['Ranks], columns = 'count')

By looking at the results we can see that the number of happy, okay and sad nations have not

changed over time. Its laregly been the same. We will check this later through Hypothesis

testing.

Checking how many people are Happy, Okay and Sad in each Region for every year:

Next we will look at how many happy, okay and sad countries exist in each region. We will

also graph this to better understand the results.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

222

ISBN 978-93-80788-93-7

In [28]:print("2015:")

 pd.crosstab(y2015['Region'],y2015['Ranks']

In [29]:print("2016:")

 pd.crosstab(y2016['Region'],y2016['Ranks']

In [30]:print("2017:")

 pd.crosstab(y2017['Region'],y2017['Ranks']

By looking at this data we can see that certain region has no happy countries and certain

regions have no sad countries. This can be better understood through bar plot graphs.

Graphing the results:

We will plot average happiness score for each region for all year. The codes used for this are:
In [31]: def region_rank_plot(df,year):

 sns.countplct(Region' , data = df, hue = 'Ranks')

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

223

ISBN 978-93-80788-93-7

 plt.xticks(rotation = 90)

 plt.xlabel('Region')

 plt.ylabel('Number of Nations in each Category')

 plt.title("Region and Ranks ({})".format(year))

Calling the function using commands:

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

224

ISBN 978-93-80788-93-7

For 2015, 2016 and 2017, it is observed that happy countries are seen only in Western

Europe, North America, Australia and New Zealand, Middle East and Latin America. All of

which have either developed nation or nation with a lot of wealth. Most happy countries are

in Western Europe. On the other hand, majority of sad countries are present in Sub-Sahara

Africa. The countries in Sub-Sahara Africa are under developed countries and the area also

prone to civil wars. This has caused these nations to be unhappy. The proportion of nation

in this region is sad. Regions with developing countries like Central and Eastern Europe,

Latin America and Western Europe sees most people being okay, i.e., neither happy nor sad.

North America, Australia and New Zealand only have happy countries. But we must also

remember that these regions have very few nations. For 2016 and 2017, Western Europe no

longer has any sad countries in it.

Testing whether Proportion of Happy, Okay and Sad people have changed:

We will conduct a hypothesis test to understand whether the proportion of happy, sad and

okay families has changed or not. Level of Significance is 1%. The code for this is:

In [35]: # Happy, Sad and Okay

 g15 = 78

 g16 = 65

 g17 = 13

 a15 = 84

 a16 = 58

 a17 = 13

 b15 = 85

 b16 = 57

 b17 = 13

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

225

ISBN 978-93-80788-93-7

In [36]: def proportion_test(pl,t,p2):

 # pl is the number of countries in year 2015

 # tl is the total number of countries in year 2015

 # p2 is the proportion of countries in year 2016

 pval = binom_test(p1,t,p2)

 alpha = 0.01

 if pval> alpha:

 print("We do not reject HO")

 else:

 print ("We reject HO")

2015 to 2016

H01: Proportion of Happy Countries has remained unchanged, against

H11: Proportion of Happy Countries has changed.

H02: Proportion of Sad Countries has remained unchanged, against

H12: Proportion of Sad Countries has changed.

H03: Proportion of Okay Countries has remained unchanged, against

H13: Proportion of Okay Countries has changed.

In [37]: proportion_test(g15, (g15+a15+b15), g16/(g16+b16+a16))

 we do not reject HO

In [38]: proportion_test(b15, (g15+a15+b15), g16/(g16+b16+a16))

 we do not reject HO

In [39]: proportion_test(a15, (g15+a15+b15), g16/(g16+b16+a16))

 we do not reject HO

Conclusion: We can thus conclude from the test that proportion of happy countries, sad

countries and okay countries have not changed from 2015 to 2016.

2016 to 2017

H01: Proportion of Happy Countries has remained unchanged, against

H11: Proportion of Happy Countries has changed.

H02: Proportion of Sad Countries has remained unchanged, against

H12: Proportion of Sad Countries has changed.

H03: Proportion of Okay Countries has remained unchanged, against

H13: Proportion of Okay Countries has changed.

In [40]: proportion_test(g16, (g16+a16+b16), g17/(g17+b17+a17))

 we do not reject HO

In [41]: proportion_test(b16, (g16+a16+b16), b17/(g17+b17+a17))

 we do not reject HO

In [42]: proportion_test(a16, (g16+a16+b16), a17/(g17+b17+a17))

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

226

ISBN 978-93-80788-93-7

 we do not reject HO

Conclusion: We can thus conclude from the test that proportion of happy countries, sad

countries and okay countries have not changed from 2016 to 2017.

2015 to 2017

H01: Proportion of Happy Countries has remained unchanged, against

H11: Proportion of Happy Countries has changed.

H02: Proportion of Sad Countries has remained unchanged, against

H12: Proportion of Sad Countries has changed.

H03: Proportion of Okay Countries has remained unchanged, against

H13: Proportion of Okay Countries has changed.
 In [43]: proportion_test(g15, (g15+a15+b15), g17/(g17+b17+a17))

 we do not reject HO

In [44]: proportion_test(b15, (g15+a15+b15), b17/(g17+b17+a17))

 we do not reject HO

In [45]: proportion_test(a15, (g15+a15+b15), a17/(g17+b17+a17))

 we do not reject HO

Conclusion: We can thus conclude from the test that proportion of happy countries, sad

countries and okay countries have not changed from 2015 to 2017.

A combined dataset was created. This was done using the formula
In [46]: combined_dataset = y2015.copy()

 combined_dataset =combined_dataset.append(y2016, sort = False)

 combined_dataset =combined_dataset.append(y2017, sort = False)

Testing whether Happiness is dependent on the Region in which the Country belongs

to:

Since countries in the same region have political, geographically and cultural similarity, so

logically speaking happiness of country should depend the region in which the country

belongs. Country in the same regions should have similar amount of happiness. We will

check this using Chi Square test.

H0: Happiness of people in a country is independent of the Region the country belongs to.

H1: Happiness of people in a country is not independent of the Region the country belongs

to.

Level of significance: 1%

Decision Criteria: If p- value is less than level of signifiance or chi square calculated is more

than chi square tabulated, we will reject H0.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

227

ISBN 978-93-80788-93-7

In [53]:def chi _ ind_test (df,alpha) :

 from scipy import stats

 contingency_table = pd.crosstab(df ["Region"],df["Ranks"])

 observed values = contingency_table.values

 observed values

 chisq_output = stats.chi2_contingency(contingency table)

 chisq_output

 expected_values = chisq_output [3]

 chi_squared_stat = (((observed_values—expected_values)**2)/

 expected_values).sum().sum()

 print(chi_squared—stat)

 print(chisq_output)

 print(chisq_output[1])

 if chisq_output[1]>alpha:

 print("We do not reject HO")

 else :

 print("We do reject HO")

In[54]:chi_ind_test(combined_dataset,alpha = 0.01)

Conclusion: We can thus conclude that happiness of people in a country is dependent on the

Region the country belongs to.

Limitations: Since some of the expected frequencies is less than 5, we cannot fully trust the

chi square results.

Correlation Plotting:

We will check the correlation between the models through pairwise scatter plot and

correlation plot of the combined dataset using matlibplot and seaborn libraries.

Plotting Scatter Plot of different Factors

In [60]: sns.pairplot(combined_dataset, kind = 'scatter', hue = "Ranks")

 plt.xlabel("Scores")

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

228

ISBN 978-93-80788-93-7

 plt.ylabel("Scores")

 plt.title("pairwise Scatter plot")

 plt.legend(loc='upper left')

Correlation between the different factors is
In [61]: corr_plot = combined_dataset.corr()

 corr_plot

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

229

ISBN 978-93-80788-93-7

Plotting Correlation using MatLibPlot Library

We will plot the correlation. The first correlation plot is made using matlibplot library.

In[62]: plt.imshow(corr_plot, cmap='hot',)

 plt.xlabel("Factors")

 plt.ylabel("Factors")

 plt.title("Correlation Plot")

 plt.show()

Plotting Correlation using Seaborn Library

The next correlation plot is using seaborn library.
In [63]:corr_plot_sns = sns.heatmap(corr_plot, annot = True, fmt='.1g',

 vmin=-1,vmax=l, center= 0, cmap= "hot_r", square= True,)

 corr_plot_sns.set_ylim(len(corr_plot)+0.5, -0.5)

 plt.title("Correlation Plot")

 plt.xlabel("Factors")

 plt.ylabel("Factors")

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

230

ISBN 978-93-80788-93-7

Its clear from the above model that happiness of country is highly correlated to Economic

and Health conditions and weakly correlated to Generosity of people in the nation and the

people’s trust on the government.

Predictive Modeling:

Dividing the dataset into Test and Train

The following code will create a copy of data frame of Combined Dataset in a randomized

order. The new dataset is divided into 2 parts train and test. 70% of data points are in train

and 30% in test.
In[55]: # We Will store a randomized order in a new dataframe

 comb = combined_dataset.sample(frac=l).reset_index(drop=True)

 # I have divided it into 2 parts

 # 70% in test and 30% in train

 train = comb [O: 329]

 test = comb [329:]

Creating the model

Variables y_train and x_train is used for training and represents the dependent and

independent variables respectively. Next we will create a model. The codes are:

In [56]: # We first import the libraries needed

 from sklearn import datasets, linear_model

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

231

ISBN 978-93-80788-93-7

 # Our dependent variable is Happiness Score

 # Our independend variable are Economy, Family, Health, Freedom, rust

 and Generosity

 y_train ="Happiness Score"]

 x_train =train[["Economy (GDP per Capita)", "Family", " Health (Life

 Expectancy)", "Freedom", "Trust (Government Corruption)",

 "Generosity"]]

 # we will now create the model

 model = sm.OLS(y_train, x_train).fit()

 print_model = model.summary()

 print(print_model)

The model summary is:

The model accuracy is given by Adjusted R Squared. The accuracy of the model is given as

98.1%. Variables for which P > |t| is more than 0.05 are not significant and are rejected.

Happiness is not dependent on them. Since Trust has P value 0.145, Trust does not have a

significant effect on Happiness. Happiness is dependent on Economy, Family, Health,

Freedom and Generosity.

We will create a new model after not considering Trust has a dependent variable.
In [57]: # We first import the libraries needed

 from sklearn import datasets, linear_model

 # Our dependent variable is Happiness Score

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

232

ISBN 978-93-80788-93-7

 # Our independend variable are Economy, Family, Health, Freedom, rust

 and Generosity

 y_train ="Happiness Score"]

 x_train =train[["Economy (GDP per Capita)", "Family", " Health (Life

 Expectancy)", "Freedom", "Generosity"]]

 # we will now create the model

 model = sm.OLS(y_train, x_train).fit()

 print_model = model.summary()

 print(print_model)

The summary is:

The accuracy of the model is given as 98.1%. Variables for which P > |t| is more than 0.05 are

not significant and are rejected. Happiness is not dependent on them. Happiness is

dependent on Economy, Family, Health, Freedom and Generosity.

Since this model has a similar accuracy to the previous model and variables in this model are

significant variables, we will accept this model.

Our model thus is:

𝑯𝒂𝒑𝒑𝒊𝒏𝒆𝒔𝒔 𝑺𝒄𝒐𝒓𝒆 = 𝟏. 𝟏𝟏𝟗𝟔 × 𝑬𝒄𝒐𝒏𝒐𝒎𝒚 + 𝟏. 𝟔𝟔𝟖𝟕 × 𝑭𝒂𝒎𝒊𝒍𝒚 + 𝟏. 𝟔𝟏𝟐𝟕 × 𝑯𝒆𝒂𝒍𝒕𝒉

 +𝟐. 𝟖𝟓𝟗𝟑 × 𝑭𝒓𝒆𝒆𝒅𝒐𝒎 + 𝟏. 𝟖𝟔𝟓𝟎 × 𝑮𝒆𝒏𝒆𝒓𝒐𝒔𝒊𝒕𝒚

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

233

ISBN 978-93-80788-93-7

Testing the model:

We will test this on the remaining 30% dataset.

In [58]:x_test = test[["Economy (GDP per Capita)", "Family", " Health (Life

 Expectancy)", "Freedom", "Generosity"]]

 y_test = test["Happiness Score"]

 predictions = model.predict(x_test)

 plt.scatter(y_test, predictions)

 plt.xlabel("True Values")

 plt.ylabel("Predictions")

 plt.title("Pridiction V/S True Values")

The above graph proves that residuals follow a normal distribution.

Using Shapiro test to check Normality

We will verify this through Shapiro Test

In [59]:from scipy import stats

 residuals = predictions - y_test

 pval = stats.shapiro(residuals)[1]

 alpha = 0.05

 if pval > alpha:

 print("Error terms follow a noraml distribution")

 else :

 print ("Error terms do not follow a normal distribution")

Error terms follow a noraml distribution

This proves that the residuals follow normal distribution.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

234

ISBN 978-93-80788-93-7

19.6 Conclusion

We were able to obtain best countries in all of the six categories for all the three years.

Switzerland, Denmark and Norway were the happiest country in 2015, 2016 and 2017

respectively. Other results can be seen on page 6.

From year 2015 to 2016, Algeria saw the biggest improvement whereas Liberia saw the

biggest downfall; from year 2016 to 2017, Bulgaria saw the biggest improvement whereas

Venezuela saw the biggest downfall and for year 2015 to 2017, Latvia saw the biggest

downfall and Venezuela saw the biggest downfall.

Venezuela saw the biggest downfall and most change in score, this is because from 2016,

Venezuela's economy collapsed and the country saw huge riots. Currently Venezuela is in an

economic crisis. This led to such a huge downfall in its score.

At an average 15 nations are happy, 83 are okay and 60 are sad. Western Europe is the

happiest region and Sub Sahara Region is the saddest.

Happiness of a country is dependent on the region in which the country belongs to. This may

be because countries in the same region tend to have similar political, social and economical

conditions.

The proportion of happy, sad and okay countries has not changed in the 3 year time period.

Happiness is highly correlated to Economy and Health and weakly correlated to Generosity.

We were also able to construct a model for predicting happiness score:

𝐻𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠 𝑆𝑐𝑜𝑟𝑒 = 1.1196 × 𝐸𝑐𝑜𝑛𝑜𝑚𝑦 + 1.6687 × 𝐹𝑎𝑚𝑖𝑙𝑦 + 1.6127 × 𝐻𝑒𝑎𝑙𝑡ℎ

 +2.8593 × 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 + 1.8650 × 𝐺𝑒𝑛𝑒𝑟𝑜𝑠𝑖𝑡𝑦

19.7 Limitation

The data we have is for only 3 years. Such a short period will not provide adequate answers.

A long period would have given us a better idea. While frequency testing some of the

frequencies was less than 5, because of this the results we obtained cannot be fully tested.

Only 146 countries data are available in all 3 dataset. This leads to inadequate results will

finding the countries with biggest change since data for some countries are missing to do

proper comparison.

The dataset is for a preference survey. Preference surveys do not always provide the right

results. A country's economic conditions may be bad but through propaganda people might

be influenced to give better results. Thus, propaganda might have influenced the survey

results.

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 19 – Analyzing Happiness Development Index using Python

235

ISBN 978-93-80788-93-7

The data is secondary and thus we have no idea how this survey was conducted and data

collected. The dataset does not consider difference in happiness and results due to gender,

religion, sexuality, etc. A particular group may be happier compared to another. It does not

consider cultural impact, entertainment impact, etc. on happiness.

19.8 Acknowledgment

We acknowledge our Principal Dr. Hemalata Bagla of K. C. College for encouraging Project

Work and Research. We sincerely acknowledge Dr. Asha Jindal, Head, Department of

Statistics, K. C. College for organizing the Python Software Schem Training with DBT- Star

College Status Scheme Fund in which we could acquire the skills to complete this project. We

would like to especially acknowledge Mr. Pravesh Tiwari for teaching us Python Software

effectively in short span of time.

19.9 References

1. https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-

80b61beca4b6

2. https://heartbeat.fritz.ai/seaborn-heatmaps-13-ways-to-customize-correlation-matrix-

visualizations-f1c49c816f07

3. Training Programme material provided by Pravesh Tiwari Sir

https://heartbeat.fritz.ai/seaborn-heatmaps-13-ways-to-customize-correlation-matrix-visualizations-f1c49c816f07
https://heartbeat.fritz.ai/seaborn-heatmaps-13-ways-to-customize-correlation-matrix-visualizations-f1c49c816f07

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 20 – Analysis of Diabetes

236

ISBN 978-93-80788-93-7

Chapter 20

Analysis of Diabetes

Mr. Aditya Shrivastava and Mr. Hruturaj Nikam

DBT- Star College Scheme Researchers, Department of Computer Science

20.1 Introduction

Diabetes is a very common metabolic disease. Usually onset of type 2 diabetes happens in

middle age and sometimes in old age. But nowadays incidences of this disease are reported

in children as well. There are several factors for developing diabetes like genetic

susceptibility, body weight, food habit and sedentary lifestyle. Undiagnosed diabetes may

result in very high blood sugar level referred as hyperglycemia which can lead to

complication like diabetic retinopathy, nephropathy, neuropathy, cardiac stroke and foot

ulcer. So, early detection of diabetes is very important to improve quality of life of patients

and enhancement of their life expectancy

20.2 Role of analytics in Diabetes

In today’s competitive world talented people are the most worthwhile treasure for the

company and at the same time burdensome to hold down such valuable resources in

organization. During last year’s, large investments were put into tools and information

systems to manage performance, hiring, compliance and employees’ development in order

to enhance its capabilities.

The learning process starts with the gathering of data by different means, from various

resources. Then the next step is to prepare the data, that is pre-process it in order to fix the

data related issues and to reduce the dimensionality of the space by removing the irrelevant

data (or selecting the data of interest). Since the amount of data that is being used for

learning is large, it is difficult for the system to make decisions, so algorithms are designed

using some logic, probability, statistics, control theory etc. to analyse the data and retrieve

the knowledge from the past experiences. Next step is testing the model to calculate the

accuracy and performance of the system. And finally optimization of the

system, i.e. improvising the model by using new rules or data set. The techniques of machine

learning are used for classification, prediction and pattern recognition. Machine learning can

be applied in various areas like: search engine, web page ranking, email filtering, face tagging

and recognizing, related advertisements, character recognition, gaming, robotics, disease

prediction and traffic management The biggest struggles in achieving better utilization of

data resources and information systems are inefficient use of the data, asking wrong

https://www.sciencedirect.com/topics/computer-science/dimensionality

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 20 – Analysis of Diabetes

237

ISBN 978-93-80788-93-7

questions and lack of analytical ability in HR environment in general. HR departments are in

need for analytically capable people enabled to provide right insights combining reporting

skills and domain knowledge.

20.3 Problem Statement

1. The goal of the case study is to find out which are the most influential factors leading to

diabetes.

2. Which person will get diabetes next?

20.4 Methodology

1. Visualization: - The first step is to visualize and perform univariate analysis to explore

data to find useful insights.

2. Model: - Next step is to model the data in order to confirm or reject our hypothesis that

certain variables are significant in determining person diabetes.

3. Actionable Insights: - The final step is to review and build onto our analysis by drawing

new insights or further enhancing existing insights.

20.5 Data Dictionary

Variable Name Variable Definition

Pregnancies Number of times pregnant

Glucose

Plasma glucose concentration a 2 hours in an oral

glucose tolerance test.

BloodPressure Number of projects completed while at work

SkinThickness Triceps skin fold thickness (mm)

Insulin 2-Hour serum insulin (mu U/ml)

BMI Body mass index (weight in kg/(height in m)^2)

DiabetesPedigreeFunction Diabetes pedigree function

Age Age (years)

Outcome Class variable (0 or 1) 268 of 768 are 1, the others are

0

20.6 Data Analysis

Structure of the data

We are using “diabetes.csv”.
In [1]:import numpy as np

 import pandas as pd

 import matplotlib.pyplot as plt

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 20 – Analysis of Diabetes

238

ISBN 978-93-80788-93-7

 import seaborn as sns

 %matplotlib inline

In [2]: diab = pd.read_csv(“C:/Users/Admin/Desktop/diabetes.csv”)

In [3]: diab.shape

Out [3]: (768, 9)

In [4]: diab.info()

From the structure of the data we can see that sample size of the data is 768 and there are 9

variables and also whether a variable is categorical or continuous.

Removing Null Values
In [7]: diad.isnull().sum()

Out[7]:Pregnancies 0

 Glucose 0

 Blood Pressure 0

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 20 – Analysis of Diabetes

239

ISBN 978-93-80788-93-7

 SkinThickness 0

 Insulin 0

 BNI 0

 DiabetesPedigreeFunction 0

 Age 0

 Outcome 0

 dtype: int64

In [8]: diab.duplicated().value_counts()

Out [8]: Fales 768

 dtype: int64

In[9]:print(f”Number of zero values for pregnancies { len(diab

 [‘Pregnancies’]==0])}\

 Number of zero values for glucose {len(diab[‘Glucose’]==0])}\

 Number of zero values for Blood Pressure {len (diab [‘Blood

 Pressure’]==0])}\

 Number of zero values for SkinThickness {len(diab

 [‘SkinThickness’]==0])}\

 Number of zero values for Insulin {len(diab[‘Insulin’]==0])}\

 Number of zero values for BMI {len(diab[‘BMI’]==0])}\“)

Pregnant women who suffer from the Diabetes
print(f”Average amount of children had by a Pima woman: {diab [‘Pregancies’]

,mean()}”)

In [10]:#unvivarite analyasis

 plt.figure(figsize=(10,6))

 sns.distplot(diab['Pregancies'],kde=False,bins=50)

 plt.title('Pregancies per Person on Pima People',fontsize=18)

 plt.xticks(fontsize=13)

 plt.yticks(fontsize=13)

 plt.xlabel('Pregnancies'fontsize=15)

 plt.ylabel('Number of people',fontsize=15)

 plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 20 – Analysis of Diabetes

240

ISBN 978-93-80788-93-7

Level of Glucose per Person on Pima People
In [11]:plt.figure(figsize=(10,6))

 sns.displot(diab['Glucose'],kde=False,bins=50)

 plt.title('Glucose per Person on Pima People',fontsize=18)

 plt.xticks(fontsize=13)

 plt.yticks(fontsize=13)

 plt.xlabel('Glucose'fontsize=15)

 plt.ylabel('Number of people',fontsize=15)

 plt.show()

Insulin of Pima Indian People
In [13]:plt.figure(figsize=(10,6))

 sns.displot(diab['Insulin'],kde=False,bins=50)

 plt.title('Glucose per Person on Pima People',fontsize=18)

 plt.xticks(fontsize=13)

 plt.yticks(fontsize=13)

 plt.xlabel('Insulin'fontsize=15)

 plt.ylabel('Number of people',fontsize=15)

 plt.show()

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 20 – Analysis of Diabetes

241

ISBN 978-93-80788-93-7

Age of Pima Indian People
In [14]:plt.figure(figsize=(10,6))

 sns.displot(diab['Age'],kde=False,bins=50)

 plt.title('Glucose per Person on Pima People',fontsize=18)

 plt.xticks(fontsize=13)

 plt.yticks(fontsize=13)

 plt.xlabel('Age'fontsize=15)

 plt.ylabel('Number of people',fontsize=15)

 plt.show()

Predictive Modeling:

Logistic Regression

Logistic Regression is a classification algorithm. It is used to predict a binary outcome (1 / 0,

Yes / No, True / False) given a set of independent variables. In simple words, it predicts the

probability of occurrence of an event by fitting data to a logit function. Logistic regression is

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 20 – Analysis of Diabetes

242

ISBN 978-93-80788-93-7

used to describe data and to explain the relationship between one dependent binary variable

and one or more nominal, ordinal, interval or ratio-level independent variables.

The logistic regression model

ln[p/(1-p)] = a + BX + e or

[p/(1-p)] = exp(a + BX + e)

where,

ln is the natural logarithm, logexp, where exp=2.71828…

p is the probability that the event Y occurs, p(Y=1)

p/(1-p) is the "odds ratio"

ln[p/(1-p)] is the log odds ratio, or "logit"

All other components of the model are the same.

The logistic regression model is simply a non-linear transformation of the linear regression.

The "logistic" distribution is an S-shaped distribution function which is similar to the

standard-normal distribution (which results in a probit regression model) but easier to work

with in most applications (the probabilities are easier to calculate). The logit distribution

constrains the estimated probabilities to lie between 0 and 1.

For instance, the estimated probability is:

p = 1/[1 + exp(-a - BX)]

With this functional form:

if you let a + BX =0, then p = .50

as a + BX gets really big, p approaches 1

as a + BX gets really small, p approaches 0.

Data splitting

Separating data into training and testing sets is an important part of evaluating data mining

models. Typically, when you separate a data set into a training set and testing set, most of

the data is used for training, and a smaller portion of the data is used for testing. Analysis

Services randomly samples the data to help ensure that the testing and training sets are

similar. By using similar data for training and testing, you can minimize the effects of data

discrepancies and better understand the characteristics of the model.

After a model has been processed by using the training set, you test the model by making

predictions against the test set. Because the data in the testing set already contains known

values for the attribute that you want to predict, it is easy to determine whether the model's

guesses are correct.

Dependent Variable for Modeling: (Whether the person is diabetic or not in future)

Independent Variables: Pregnancies, Glucose, BloodPressure, Insulin, BMI,

DiabetesPedigreeFunction, Age

Model Building and Output Interpretation

Step 1: Create a logistic model
In [15]: # Logistic Regession

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 20 – Analysis of Diabetes

243

ISBN 978-93-80788-93-7

In [16]: from Sklearn.model_selection import train_test_split

 from sklern.linear_model import LogisticRegression

 from sklearn.metrics import classification_report, confusion_matrix

In [17]: x = diab.drop(['Outcome'],axis=1)

 y=diab['Outcome']

In[18]: x_train,x_test, y_train = train_test_split(x, y, test_size=0.3,

 random_state=101)

 lr=logisticRegression('12',solver='newton-cg')

 lr=fit(x_train,y_train)

Out [18]: LogisticRegression(c=1.O, claas_weight=none, dual=False,

 fit_intercept=True,

 intercept_scaling=1, 11_ratio=none, max_iter=100,

 multi_class='warn', n_jobs=None, penalty='12',

 random_state=None, solver='newton-cg', tol=0.0001,

 verbose=0,

 warm_start=False)

In [38]: #Alternative way

 from sklearn.feature_selection import RFE

 import statsmodels.api as sm

 logreg = LogisticRegression()

 rfe = RFE(logre,)

 rfe = rfe.fit(X_train, y_train.values.ravel())

 list(zip(x_train.columns,rfe.support_,rfe.ranking_))

Out [38]:[('Pregnancies', True, 1),

 ('Glucose', True, 1),

 ('BloodPressure', False, 2),

 ('SkinThickness', False, 4) ,

 ('Inaulin', False, 5),

 ('BMI', True, 1),

 ('DiabetesPedigreePunction', True, 1),

 ('Age', False, 3)]

 In [39]: print(x_train.columns[rfe.support_])

 x_train_rfe = x_train[x_train.columns[rfe.support_]]

 x_train_rfe = sm.add_constant(x_train_rfe)

 Index(['Pregnancies','Glucose','BMI','DiabetesPedigreePunction'],dty

 pe='object'

In [40]: model = sm.logit(y_train, x_train_rfe)

 result = model.fit()

 result.summary()

 optimization terminated successfully.

 Current function value: 0.483368

 Iteration 6

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 20 – Analysis of Diabetes

244

ISBN 978-93-80788-93-7

Step 2: Global testing

H0: b1 = b2 = … = bk = 0 OR (H0: None of the variables has significant impact)

H1: At least one coefficient is not zero

Test Statistic:

 χ2 = L1 – L2 which follows Chi-square distribution with k df.

L1 = –2 log L with only constant term L2 = –2 log L with k variables and constant term

Reject H0 for large value of χ2 or Reject H0 if p-value < 0.05

Since p-value is less than 0.05 we reject H0 and conclude that the variable is making impact

on dependent variable.

Step 3: Obtaining confusion matrix
In [41]: logreg = LogisticRegression()

 logreg.fit(x_train_rfe, y_train)

 x_test = sm.add_constant(x_test)

 x_test_rfe = x_test.filter(list(x_train_rfe.columns))

 y_pred = logreg.predict(x_test_rfe)

In [42]: from sklearn.metrics import confusion_matrix

 confusion_matrix = confusion_matrix(y_test, y_pred)

 print(confusion_matrix)

 [[134 16]

 [34 47]]

Step 4: Measuring accuracy of the model
In [43]: from sklearn.metrics import roc_auc_score

 from sklearn.metrics import roc_curva

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

Chapter 20 – Analysis of Diabetes

245

ISBN 978-93-80788-93-7

 logit_roc_auc = roc_auc_score(y_test,

 logreg.predict_proba(x_test_rfe)[:,1])

 plt.figure(),

 plt.plot(fpr, tpr, label= 'Logistic Regression (area = %0.2f)'

 %logit_roc_auc)

 plt.plot([0,1],[0,1],'r--')

 plt.xlim([0.0, 1.0])

 plt.ylim([0.0,1.05])

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

 plt.title('Receiver operating charateristic')

 plt.legend(loc="lower right")

 #plt.savefig('Log_ROC')

 plt.show()

Area inside the curve which indicates accuracy of the model is 74%.

20.7 References

1. https://realpython.com/logistic-regression-python/

2. https://towardsdatascience.com/logistic-regression-python-7c451928efee

3. Training Programme notes conducted by Pravesh Tiwari

Analyzing and Visualizing Data using free open-source software – Python Programming with case studies

ISBN 978-93-80788-93-7

Graphics & Design Team, K. C. College

Mr. Roshan Khilnani, Coordinator, Graphics & Design

Mr. Monish Jeswani, Student, Dept of Computer Science

Mr. Kartik Sharma, Student, Dept of Computer Science

Ms. Roshini Gupta, Student, Dept of Computer Science

